Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.12.1409

The Antimicrobial Activity of Bacterial-challenged Black Soldier Fly, Hermetia illucens  

Park, Kwanho (Department of Agricultural Biology, National Academy of Agricultural Science, RDA)
Yun, Eun-Young (Graduate School of Integrated Bioindustry, Sejong University)
Park, Seung-Won (Department of Biotechnology, Catholic University of Daegu)
Goo, Tae-Won (Department of Biochemistry, School of Medicine, Dongguk University)
Publication Information
Journal of Life Science / v.26, no.12, 2016 , pp. 1409-1414 More about this Journal
Abstract
In the larvae of the black soldier fly, Hermetia illucens, innate immunity mechanisms are activated in response to various pathogens and stimulants, resulting in the expression of antimicrobial peptides (AMPs). To induce the mass production of AMPs, H. illucens fifth instar larvae were immunized with five different kinds of bacteria. We isolated from the hemolymph of the H. illucens larvae after bacterial challenge, and their antimicrobial activities against Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli) were measured using the inhibition zone assay. Among these five different kinds of bacteria, the hemolymph of Bacillus subtilis-challenged H. illucens larvae showed the strongest antimicrobial activity against both Gram-positive bacteria and Gram-negative bacteria. The antimicrobial activity of the hemolymph of $1{\times}10^9cfu/ml$ B. subtilis-challenged H. illucens peaks at 24 hr at 48 hr post-infection and gradually declines with time. Moreover, the immunized hemolymph also showed strong antimicrobial activity against various poultry pathogens such as S. enteritidis, S. typhimurium, and S. pullorum. These results suggest that the expression of AMP genes in B. subtilis-challenged H. illucens is up-regulated by innate immune responses, and that B. subtilis-challenged H. illucens overexpressing AMPs may be useful as a feed additive in livestock diets to reduce the need for antibiotics.
Keywords
Antimicrobial peptide; alternative antibiotics; innate immunity; Hermetia illucens;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Andreu, D. and Rivas, L. 1998. Animal antimicrobial peptides: an overview. Biopolymers 47, 415-433.   DOI
2 Baltzer, S. A. and Brown, M. H. 2011. Antimicrobial peptides: promising alternatives to conventional antibiotics. J. Mol. Microbiol. Biotechnol. 20, 228-235.   DOI
3 Barton, M. D. 2000. Antibiotic use in animal feed and its impact on human health. Nutr. Res. Rev. 13, 279-299.   DOI
4 Boman, H. G. 1995. Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol. 13, 61-92.   DOI
5 Brogden K. A. 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria. Nat. Rev. Microbiol. 3, 238-250.   DOI
6 Bulet, P., Hetru, C., Dimarcq, J. L. and Hoffmann, D. 1999. Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol. 23, 329-344.   DOI
7 Casteels, P., Ampe, C., Riviere, L., Damme, J. V., Elicone, C., Fleming, M., Jacobs, F. and Tempst, P. 1990. Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera). Eur. J. Biochem. 187, 381-386.   DOI
8 Choi, Y. C., Park, K. H., Nam, S. H., Jang, B. G., Kim, J. H., Kim, D. W. and Yu, D. J. 2013. The effect on growth performance of chicken meat in broiler chicks by dietary supplementation of black soldier fly larvae, Hermetia illucens (Diptera : Stratmyidae). J. Seric. Entomol. Sci. 51, 30-35.
9 Goo, T. W, Yun, E. Y, Kim, S. W., Choi, K. H, Kang, S. W., Kwon, K., Choi, J. S. and Kwon, O. Y. 2008. Secretion of the antibacterial recombinant protein enbocin. Z. Naturforsch C. 63, 284-288.
10 Goo, T. W., Yun, E. Y., Kim, S. W., Choi, K. H., Kang, S. W, Kwon, K., Yu, K. and Kwon, O. Y. 2008. Bombyx mori protein disulfide isomerase enhances the production of nuecin, an antibacterial protein. BMB Rep. 41, 400-403.   DOI
11 Hoffman, J. A., Kafatos, F. C., Janeway, C. A. and Ezekowitz, R. A. 1999. Phylogenetic perspectives in innate immunity. Science 284, 1313-1318.   DOI
12 Kaneko, Y., Furukawa, S., Tanaka, H. and Yamakawa, M. 2007. Expression of antimicrobial peptide genes encoding Enbocin and Gloverin isoforms in the silkworm, Bombyx mori. Biosci. Biotechnol. Biochem. 71, 2233-2241.   DOI
13 Kang, H. K., Seo, O. S., Choi, H. C., Chae, H. S., Na, J. C., Bang, H. T., Kim, D. W., Park, S. B, Kim, M. J. and Jung, S. H. 2010. Effect of dietary supplementation of chlorella powder on production performances, blood components. Kor J. Poult Sci. 27th Regular Conference 106-108.
14 Kim, A. R., Lee, Y. J., Kang, M. S., Kwag, S. I. and Cho, J. K. 2007. Dissemination and tracking of Salmonella spp. in integrated broiler operation. J. Vet. Sci. 8, 155-161.   DOI
15 Kim, S. R., Lee, E. M., Yoon, H. J., Choi, Y. S., Yun, E. Y., Hwang, J. S., Jin, B. R., Lee, I. H. and Kim, I. 2007. Antibactrial activity of peptides synthesized based on the Bombus ignitus abaecin, a novel prolinerich antimicrobial peptide. Int. J. Indust. Entomol. 14, 147-150.
16 Park, S. I., Kim, J. W. and Yoe, S. M. 2015. Purification and characterization of a novel antibacterial peptide from black soldier fly (Hermetia illucens) larvae. Dev. Comp. Immunol. 52, 98-106.   DOI
17 Lee, H. W., Hong, C. H. and Jung, B. Y. 2007. Characteristics of Salmonella spp. isolated from poultry carcasses. Kor. J. Vet. Serv. 30, 339-351.
18 Looft, T., Johnson, T. A., Allen, H. K., Bayles, D. O., Alt, D. P., Stedtfeld, R. D., Sul, W. J., Stedtfeld, T. M., Chai, B., Cole, J. R., Hashsham, S. A., Tiedje, J. M. and Stantona, T. B. 2012. In-feed antibiotic effects on the swine intestinal microbiome. Proc. Natl. Acad. Sci. USA 109, 1691-1696.   DOI
19 Olsen, S. J., MacKinon, L. C., Goulding, J. S., Bean, N. H. and Slutsker, L. 2000. Surveillance for foodborne disease outbreaks-United States, 1993-1997. MMWR Surveill Summ. 49, 1-51.
20 Otvos, L. Jr. 2000. Antibacterial peptides isolated from insects. J. Pept. Sci. 6, 497-511.   DOI
21 Sugiyama, M., Kuniyoshi, H., Kotani, E., Taniai, K., Kadono-Okuda, K., Kato, Y., Yamamoto, M., Shimabukuro, M., Chowdhury, S. and Xu, J. 1995. Characterization of a Bombyx mori cDNA encoding a novel member of the attacin family of insect antibacterial proteins. Insect Biochem. Mol. Biol. 25, 385-392.   DOI
22 Tanaka, H., Ishibashi, J., Fujita, K., Nakajima, Y., Sagisaka, A., Tomimoto, K., Suzuki, N., Yoshiyama, M., Kaneko, Y., Iwasaki, T., Sunagawa, T., Yamaji, K., Asaoka, A., Mita, K. and Yamakawa, M. 2008. A genome-wide analysis of genes and gene families involved in innate immunity of Bombyx mori. Insect Biochem. Mol. Biol. 38, 1087-1110.   DOI
23 Walkenhorst, W. F., Klein, J. W., Vo, P. and Wimley, W. C. 2013. pH Dependence of microbe sterilization by cationic antimicrobial peptides. Antimicrob. Agents Chemother. 7, 3312-3320.
24 Zasloff, M. 2002. Antimicrobial peptides of muticellular organism. Nature 415, 329-344.
25 Yi, H. Y., Chowdhury, M., Huang, Y. D. and Yu, X. Q. 2014. Insect antimicrobial peptides and their applications. Appl. Microbiol. Biotechnol. 98, 5807-5822.   DOI
26 Yoo, J. H., Park, G. H., Sung, J. S., Song, H. N., Shin, S. Y., Jung, W. H. and Jung, M. H. 2014. Feed additives in broiler diets to produce healthy chickens without in-feed antimicrobial compounds. CNU Journal of Agricultural Science 41, 441-453.
27 Yun, E. Y., Lee, J. K., Kwon, O. Y., Hwang, J. S., Kim, I., Kang, S. W., Lee, W. J., Ding, J. L., You, K. H. and Goo, T. W. 2009. Bombyx mori transferrin: genomic structure, expression and antimicrobial activity of recombinant protein. Dev. Comp. Immunol. 33, 1064-1069.   DOI