Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.12.1392

Differential Cytotoxic Effects of Jaspine B in Various Cancer Cells  

Lee, Jihoon (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University)
Choi, Kwangik (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University)
Kwon, Mihwa (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University)
Lee, Dongjoo (College of Pharmacy, Ajou University)
Choi, Min-Koo (College of Pharmacy, Dankook University)
Song, Im-Sook (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University)
Publication Information
Journal of Life Science / v.26, no.12, 2016 , pp. 1392-1399 More about this Journal
Abstract
Jaspine B is an anhydrophytosphingosine that is isolated from a marine sponge. Because of its structural similarity to sphingosine, it shows anti-cancer effects in human carcinomas. Therefore, this study aims to investigate its anti-proliferative effect on various cancer cells and to correlate its association with the intracellular accumulation of Jaspine B in relevant cancer cells. The anti-proliferative effect of Jaspine B in various cancer cells was determined by a cell viability test, and the intracellular concentration of Jaspine B in relevant cancer cells was determined using mass spectrometry coupled with liquid chromatography. The correlation coefficient and p value between the cytotoxicity and the cell accumulation of Jaspine B were determined using SPSS 16.1. The cytotoxicity of Jaspine B varied depending on the type of cancer cell when compared the $EC_{50}$ values of Jaspine B. Breast and melanoma cancer cells were susceptible to Jaspine B, whereas renal carcinoma cells were resistant. The intracellular concentrations of Jaspine B had a reciprocal correlation with the $EC_{50}$ values in the same cells (r = 0.838). The results suggested that the anti-proliferative effect of Jaspine B was associated with the cellular accumulation of this compound. However, Jaspine B was not a substrate for P-glycoprotein and breast cancer resistance protein, as major efflux pumps caused multidrug resistance. The maintenance of a high intracellular concentration is crucial for the cytotoxic effect of Jaspine B; however, efflux pumps may not be a controlling factor for Jaspine B-related resistance in cancer cells.
Keywords
Cancer cells; cytotoxicity; efflux pump; intracellular accumulation; Jaspine B;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yoo, H., Lee, Y. S., Lee, S., Kim, S. and Kim, T. Y. 2012. Pachastrissamine from pachastrissa sp. Inhibits melanoma cell growth by dual inhibition of cdk2 and erk-mediated foxo3 downregulation. Phytother. Res. 26, 1927-1933.   DOI
2 Zhang, S., Lovejoy, K. S., Shima, J. E., Lagpacan, L. L., Shu, Y., Lapuk, A., Chen, Y., Komori, T., Gray, J. W., Chen, X., Lippard, S. J. and Giacomini, K. M. 2006. Organic cation transporters are determinants of oxaliplatin cytotoxicity. Cancer Res. 66, 8847-8857.   DOI
3 Bao, L., Hazari, S., Mehra, S., Kaushal, D., Moroz, K. and Dash, S. 2012. Increased expression of p-glycoprotein and doxorubicin chemoresistance of metastatic breast cancer is regulated by mir-298. Am. J. Pathol. 180, 2490-2503.   DOI
4 Johnson, K. R., Johnson, K. Y., Crellin, H. G., Ogretmen, B., Boylan, A. M., Harley, R. A. and Obeid, L. M. 2005. Immunohistochemical distribution of sphingosine kinase 1 in normal and tumor lung tissue. J. Histochem. Cytochem. 53, 1159-1166.   DOI
5 French, K. J., Schrecengost, R. S., Lee, B. D., Zhuang, Y., Smith, S. N., Eberly, J. L., Yun, J. K. and Smith, C. D. 2003. Discovery and evaluation of inhibitors of human sphingosine kinase. Cancer Res. 63, 5962-5969.
6 Gately, D. P. and Howell, S. B. 1993. Cellular accumulation of the anticancer agent cisplatin: A review. Br. J. Cancer 67, 1171-1176.   DOI
7 Giacomini, K. M., Huang, S. M., Tweedie, D. J., Benet, L. Z., Brouwer, K. L., Chu, X., Dahlin, A., Evers, R., Fischer, V., Hillgren, K. M., Hoffmaster, K. A., Ishikawa, T., Keppler, D., Kim, R. B., Lee, C. A., Niemi, M., Polli, J. W., Sugiyama, Y., Swaan, P. W., Ware, J. A., Wright, S. H., Yee, S. W., Zamek-Gliszczynski, M. J. and Zhang, L. 2010. Membrane transporters in drug development. Nat. Rev. Drug Discov. 9, 215-236.   DOI
8 Indumathy, S. and Dass, C. R. 2013. Finding chemo: The search for marine-based pharmaceutical drugs active against cancer. J. Pharm. Pharmacol. 65, 1280-1301.   DOI
9 Ishida, S., Lee, J., Thiele, D. J. and Herskowitz, I. 2002. Uptake of the anticancer drug cisplatin mediated by the copper transporter ctr1 in yeast and mammals. Proc. Natl. Acad. Sci. USA 99, 14298-14302.   DOI
10 Katano, K., Kondo, A., Safaei, R., Holzer, A., Samimi, G., Mishima, M., Kuo, Y. M., Rochdi, M. and Howell, S. B. 2002. Acquisition of resistance to cisplatin is accompanied by changes in the cellular pharmacology of copper. Cancer Res. 62, 6559-6565.
11 Kunkel, G. T., Maceyka, M., Milstien, S. and Spiegel, S. 2013. Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. Nat. Rev. Drug. Discov. 12, 688-702.   DOI
12 Maceyka, M., Payne, S. G., Milstien, S. and Spiegel, S. 2002. Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. Biochim. Biophys. Acta. 1585, 193-201.   DOI
13 Kuroda, I., Musman, M., Ohtani, Ii, Ichiba, T., Tanaka, J., Gravalos, D. G. and Higa, T. 2002. Pachastrissamine, a cytotoxic anhydrophytosphingosine from a marine sponge, pachastrissa sp. J. Nat. Prod. 65, 1505-1506.   DOI
14 Kuznetsov, G., Towle, M. J., Cheng, H., Kawamura, T., Tendyke, K., Liu, D., Kishi, Y., Yu, M. J. and Littlefield, B. A. 2004. Induction of morphological and biochemical apoptosis following prolonged mitotic blockage by halichondrin b macrocyclic ketone analog e7389. Cancer Res. 64, 5760-5766.   DOI
15 Kwon, Y., Song, J., Bae, H., Kim, W. J., Lee, J. Y., Han, G. H., Lee, S. K. and Kim, S. 2015. Synthesis and biological evaluation of carbocyclic analogues of pachastrissamine. Mar. Drugs 13, 824-837.   DOI
16 Lim, K. G., Gray, A. I., Pyne, S. and Pyne, N. J. 2012. Resveratrol dimers are novel sphingosine kinase 1 inhibitors and affect sphingosine kinase 1 expression and cancer cell growth and survival. Br. J. Pharmacol. 166, 1605-1616.   DOI
17 Lim, K. G., Tonelli, F., Li, Z., Lu, X., Bittman, R., Pyne, S. and Pyne, N. J. 2011. Fty720 analogues as sphingosine kinase 1 inhibitors: Enzyme inhibition kinetics, allosterism, proteasomal degradation, and actin rearrangement in mcf-7 breast cancer cells. J. Biol. Chem. 286, 18633-18640.   DOI
18 Mcgrath, T. and Center, M. S. 1988. Mechanisms of multidrug resistance in hl60 cells: Evidence that a surface membrane protein distinct from p-glycoprotein contributes to reduced cellular accumulation of drug. Cancer Res. 48, 3959-3963.
19 Pyne, S., Bittman, R. and Pyne, N. J. 2011. Sphingosine kinase inhibitors and cancer: Seeking the golden sword of hercules. Cancer Res. 71, 6576-6582.   DOI
20 Mease, K., Sane, R., Podila, L. and Taub, M. E. 2012. Differential selectivity of efflux transporter inhibitors in caco-2 and mdck-mdr1 monolayers: A strategy to assess the interaction of a new chemical entity with p-gp, bcrp, and mrp2. J. Pharm. Sci. 101, 1888-1897.   DOI
21 Russo, P., Nastrucci, C. and Cesario, A. 2011. From the sea to anticancer therapy. Curr. Med. Chem. 18, 3551-3562.   DOI
22 Salma, Y., Lafont, E., Therville, N., Carpentier, S., Bonnafe, M. J., Levade, T., Genisson, Y. and Andrieu-Abadie, N. 2009. The natural marine anhydrophytosphingosine, jaspine b, induces apoptosis in melanoma cells by interfering with ceramide metabolism. Biochem. Pharmacol. 78, 477-485.   DOI
23 Sato, H., Siddig, S., Uzu, M., Suzuki, S., Nomura, Y., Kashiba, T., Gushimiyagi, K., Sekine, Y., Uehara, T., Arano, Y., Yamaura, K. and Ueno, K. 2015. Elacridar enhances the cytotoxic effects of sunitinib and prevents multidrug resistance in renal carcinoma cells. Eur. J. Pharmacol. 746, 258-266.   DOI
24 Shida, D., Takabe, K., Kapitonov, D., Milstien, S. and Spiegel, S. 2008. Targeting sphk1 as a new strategy against cancer. Curr. Drug. Targets 9, 662-673.   DOI
25 Sobue, S., Iwasaki, T., Sugisaki, C., Nagata, K., Kikuchi, R., Murakami, M., Takagi, A., Kojima, T., Banno, Y., Akao, Y., Nozawa, Y., Kannagi, R., Suzuki, M., Abe, A., Naoe, T. and Murate, T. 2006. Quantitative rt-pcr analysis of sphingolipid metabolic enzymes in acute leukemia and myelodysplastic syndromes. Leukemia 20, 2042-2046.
26 Yang, J. Y., Chang, C. J., Xia, W., Wang, Y., Wong, K. K., Engelman, J. A., Du, Y., Andreeff, M., Hortobagyi, G. N. and Hung, M. C. 2010. Activation of foxo3a is sufficient to reverse mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor chemoresistance in human cancer. Cancer Res. 70, 4709-4718.   DOI
27 Spiegel, S. and Milstien, S. 2003. Sphingosine-1-phosphate: An enigmatic signalling lipid. Nat. Rev. Mol. Cell. Biol. 4, 397-407.   DOI
28 Stoica, B. A., Movsesyan, V. A., Lea, P. M. T. and Faden, A. I. 2003. Ceramide-induced neuronal apoptosis is associated with dephosphorylation of akt, bad, fkhr, gsk-3beta, and induction of the mitochondrial-dependent intrinsic caspase pathway. Mol. Cell. Neurosci. 22, 365-382.   DOI