Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.11.1345

Advance Understanding and New Treatment of Alopecia Areata  

Kang, Kyung-Hwa (Department of Physiology, College of Korean Medicine, Dong-Eui University)
Publication Information
Journal of Life Science / v.26, no.11, 2016 , pp. 1345-1354 More about this Journal
Abstract
Alopecia areata (AA) is a common and tissue-specific autoimmune disease of hair follicle resulting in the loss of hair on the scalp and elsewhere on the body. Hair follicles is a unique organ because it has its own immune system and hormonal milieu and has a different immune state at each hair cycle stage. The collapses of anagen-dependent hair follicle immune privilege arise autoimmune attack, inducing ectopic MHC class I expression in the hair follicle epithelium and autoantigen presentation to autoreactive CD8+T cells, which results in AA. Clinical and experimental studies have pointed that psychological stress may also influence the hair follicle immune/hormone systems and contribute to the induction of AA. The key pathogenesis of AA is associated with immune privilege guardians (including ACTH, ${\alpha}-MSH$, and $TGF-{\beta}$), natural killer group 2D-positive (NKG2D+) cells (including NK and CD8+T cells), and stress hormones (including CRH and substance P). Effective treatments for AA are still demanded. One of the future targets of treatment will be the modification of hair follicle immune privilege including stress. Recent studies have reported that JAK inhibitors and immunomodulators used in other autoimmune disease, such as psoriasis, atopic dermatitis, and rheumatoid arthritis, Tregs, platelet-rich plasma therapy, statins, and prostaglandin anaolgues are effective for AA. Here the article reviews the recent understanding in the pathogenesis associated with perifollicular endocrine/immunology and new treatments of AA.
Keywords
Alopecia areata; autoimmunity; hair follicle immune privilege; stress; treatment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Amano, W., Nakajima, S., Kunugi, H., Numata, Y., Kitoh, A., Egawa, G., Dainichi, T., Honda, T., Otsuka, A., Kimoto, Y., Yamamoto, Y., Tanimoto, A., Matsushita, M., Miyachi, Y. and Kabashima, K. 2015. The Janus kinase inhibitor JTE-052 improves skin barrier function through suppressing signal transducer and activator of transcription 3 signaling. J. Allergy Clin. Immunol. 136, 667-677.e667.   DOI
2 Amano, W., Nakajima, S., Yamamoto, Y., Tanimoto, A., Matsushita, M., Miyachi, Y. and Kabashima, K. 2016. JAK inhibitor JTE-052 regulates contact hypersensitivity by downmodulating T cell activation and differentiation. J. Dermatol. Sci. In press.
3 Wengraf, D. A., McDonagh, A. J., Lovewell, T. R., Vasilopoulos, Y., Macdonald-Hull, S. P., Cork, M. J., Messenger, A. G. and Tazi-Ahnini, R. 2008. Genetic analysis of autoimmune regulator haplotypes in alopecia areata. Tissue Antigens. 71, 206-212.   DOI
4 Wu, J., Song, Y., Bakker, A. B., Bauer, S., Spies, T., Lanier, L. L. and Phillips, J. H. 1999. An activating immunoreceptor complex formed by NKG2D and DAP10. Science 285, 730-732.   DOI
5 Xing, L., Dai, Z., Jabbari, A., Cerise, J. E., Higgins, C. A., Gong, W., de Jong, A., Harel, S., DeStefano, G. M., Rothman, L., Singh, P., Petukhova, L., Mackay-Wiggan, J., Christiano, A. M. and Clynes, R. 2014. Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nat. Med. 20, 1043-1049.   DOI
6 Yokoyama, W. M. and Kim, S. 2006. Licensing of natural killer cells by self-major histocompatibility complex class I. Immunol. Rev. 214, 143-154.   DOI
7 Zawar, V. P. and Karad, G. M. 2016. Liquid Nitrogen Cryotherapy in Recalcitrant Alopecia Areata: A Study of 11 Patients. Int. J. Trichology 8, 15-20.   DOI
8 Zhang, X., Yu, M., Yu, W., Weinberg, J., Shapiro, J. and McElwee, K. J. 2009. Development of alopecia areata is associated with higher central and peripheral hypothalamic-pituitary- adrenal tone in the skin graft induced C3H/HeJ mouse model. J. Invest Dermatol. 129, 1527-1538.   DOI
9 Arakawa, Y., Nomiyama, T. and Katoh, N. 2016. Three hundred and eight nanometer excimer light therapy for alopecia universalis that is resistant to other treatments: A clinical study of 11 patients. J. Dermatol. In press.
10 Anuset, D., Perceau, G., Bernard, P. and Reguiai, Z. 2016. Efficacy and safety of methotrexate combined with low- to moderate-dose corticosteroids for severe alopecia areata. Dermatology 232, 242-248.   DOI
11 Arck, P. C., Handjiski, B., Peters, E. M., Peter, A. S., Hagen, E., Fischer, A., Klapp, B. F. and Paus, R. 2003. Stress inhibits hair growth in mice by induction of premature catagen development and deleterious perifollicular inflammatory events via neuropeptide substance P-dependent pathways. Am. J. Pathol. 162, 803-814.   DOI
12 Avidan, N., Le Panse, R., Berrih-Aknin, S. and Miller, A. 2014. Genetic basis of myasthenia gravis - a comprehensive review. J. Autoimmun. 52, 146-153.   DOI
13 Bauer, S., Groh, V., Wu, J., Steinle, A., Phillips, J. H., Lanier, L. L. and Spies, T. 1999. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727-729.   DOI
14 Boehm, T. 2006. Quality control in self/nonself discrimination. Cell 125, 845-858.   DOI
15 Bertolini, M., Zilio, F., Rossi, A., Kleditzsch, P., Emelianov, V. E., Gilhar, A., Keren, A., Meyer, K. C., Wang, E., Funk, W., McElwee, K. and Paus, R. 2014. Abnormal interactions between perifollicular mast cells and CD8+ T-cells may contribute to the pathogenesis of alopecia areata. PLoS One 9, e94260.   DOI
16 Bertolini, M., Uchida, Y. and Paus, R. 2015. Toward the Clonotype Analysis of Alopecia Areata-Specific, Intralesional Human CD8+ T Lymphocytes. J. Investig. Dermatol. Symp. Proc. 17, 9-12.
17 Betz, R. C., Petukhova, L., Ripke, S., Huang, H., Menelaou, A., Redler, S., Becker, T., Heilmann, S., Yamany, T., Duvic, M., Hordinsky, M., Norris, D., Price, V. H., Mackay-Wiggan, J., de Jong, A., DeStefano, G. M., Moebus, S., Bohm, M., Blume-Peytavi, U., Wolff, H., Lutz, G., Kruse, R., Bian, L., Amos, C. I., Lee, A., Gregersen, P. K., Blaumeiser, B., Altshuler, D., Clynes, R., de Bakker, P. I., Nothen, M. M., Daly, M. J. and Christiano, A. M. 2015. Genome-wide meta-analysis in alopecia areata resolves HLA associations and reveals two new susceptibility loci. Nat. Commun. 6, 5966.   DOI
18 Billingham, R. E. and Silvers, W. K. 1971. A biologist's reflections on dermatology. J. Invest Dermatol. 57, 227-240.   DOI
19 Bissonnette, R., Papp, K. A., Poulin, Y., Gooderham, M., Raman, M., Mallbris, L., Wang, C., Purohit, V., Mamolo, C., Papacharalambous, J. and Ports, W. C. 2016. Topical tofacitinib for atopic dermatitis: a phase IIa randomized trial. Br J Dermatol. 175, 902-911.   DOI
20 Byun, J. W., Moon, J. H., Bang, C. Y., Shin, J. and Choi, G. S. 2015. Effectiveness of 308-nm excimer laser therapy in treating alopecia areata, determined by examining the treated sides of selected alopecic patches. Dermatology 231, 70-76.   DOI
21 Shin, B. S., Furuhashi, T., Nakamura, M., Torii, K. and Morita, A. 2013. Impaired inhibitory function of circulating CD4+ CD25+ regulatory T cells in alopecia areata. J. Dermatol. Sci. 70, 141-143.   DOI
22 Castela, E., Le Duff, F., Butori, C., Ticchioni, M., Hofman, P., Bahadoran, P., Lacour, J. P. and Passeron, T. 2014. Effects of low-dose recombinant interleukin 2 to promote T-regulatory cells in alopecia areata. JAMA Dermatol. 150, 748-751.   DOI
23 Roloff, B., Fechner, K., Slominski, A., Furkert, J., Botchkarev, V. A., Bulfone-Paus, S., Zipper, J., Krause, E. and Paus, R. 1998. Hair cycle-dependent expression of corticotropin-releasing factor (CRF) and CRF receptors in murine skin. Faseb J. 12, 287-297.   DOI
24 Seetharam, K. A. 2013. Alopecia areata: an update. Indian J. Dermatol. Venereol. Leprol. 79, 563-575.   DOI
25 Senila, S. C., Danescu, S. A., Ungureanu, L., Candrea, E. and Cosgarea, R. M. 2015. Intravenous methylprednisolone pulse therapy in severe alopecia areata. Indian J. Dermatol. Venereol. Leprol. 81, 95.
26 Shellow, W. V., Edwards, J. E. and Koo, J. Y. 1992. Profile of alopecia areata: a questionnaire analysis of patient and family. Int. J. Dermatol. 31, 186-189.   DOI
27 Siebenhaar, F., Sharov, A. A., Peters, E. M., Sharova, T. Y., Syska, W., Mardaryev, A. N., Freyschmidt-Paul, P., Sundberg, J. P., Maurer, M. and Botchkarev, V. A. 2007. Substance P as an immunomodulatory neuropeptide in a mouse model for autoimmune hair loss (alopecia areata). J. Invest Dermatol. 127, 1489-1497.   DOI
28 Slominski, A., Paus, R. and Mazurkiewicz, J. 1992. Proopiomelanocortin expression in the skin during induced hair growth in mice. Experientia 48, 50-54.   DOI
29 Chiang, K. S., Mesinkovska, N. A., Piliang, M. P. and Bergfeld, W. F. 2015. Clinical efficacy of diphenylcyclopropenone in alopecia areata: retrospective data analysis of 50 patients. J. Investig. Dermatol. Symp. Proc. 17, 50-55.   DOI
30 Cerwenka, A. and Swain, S. L. 1999. TGF-beta1: immunosuppressant and viability factor for T lymphocytes. Microbes Infect. 1, 1291-1296.   DOI
31 Christoph, T., Muller-Rover, S., Audring, H., Tobin, D. J., Hermes, B., Cotsarelis, G., Ruckert, R. and Paus, R. 2000. The human hair follicle immune system: cellular composition and immune privilege. Br. J. Dermatol. 142, 862-873.   DOI
32 Chu, T. W., AlJasser, M., Alharbi, A., Abahussein, O., Mc-Elwee, K. and Shapiro, J. 2015. Benefit of different concentrations of intralesional triamcinolone acetonide in alopecia areata: An intrasubject pilot study. J. Am. Acad. Dermatol. 73, 338-340.   DOI
33 Coronel-Perez, I. M., Rodriguez-Rey, E. M. and Camacho-Martinez, F. M. 2010. Latanoprost in the treatment of eyelash alopecia in alopecia areata universalis. J. Eur. Acad. Dermatol. Venereol. 24, 481-485.   DOI
34 Foitzik, K., Lindner, G., Mueller-Roever, S., Maurer, M., Botchkareva, N., Botchkarev, V., Handjiski, B., Metz, M., Hibino, T., Soma, T., Dotto, G. P. and Paus, R. 2000. Control of murine hair follicle regression (catagen) by TGF-beta1 in vivo. Faseb J. 14, 752-760.   DOI
35 Garcia-Hernandez, M. J., Ruiz-Doblado, S., Rodriguez- Pichardo, A. and Camacho, F. 1999. Alopecia areata, stress and psychiatric disorders: a review. J. Dermatol. 26, 625-632.   DOI
36 Tan, E., Tay, Y. K., Goh, C. L. and Chin Giam, Y. 2002. The pattern and profile of alopecia areata in Singapore--a study of 219 Asians. Int. J. Dermatol. 41, 748-753.   DOI
37 Slominski, A., Wortsman, J., Mazurkiewicz, J. E., Matsuoka, L., Dietrich, J., Lawrence, K., Gorbani, A. and Paus, R. 1993. Detection of proopiomelanocortin-derived antigens in normal and pathologic human skin. J. Lab Clin. Med. 122, 658-666.
38 Slominski, A., Botchkareva, N. V., Botchkarev, V. A., Chakraborty, A., Luger, T., Uenalan, M. and Paus, R. 1998. Hair cycle-dependent production of ACTH in mouse skin. Biochim. Biophys. Acta. 1448, 147-152.   DOI
39 Slominski, A., Wortsman, J., Luger, T., Paus, R. and Solomon, S. 2000. Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol. Rev. 80, 979-1020.   DOI
40 Stenn, K. S. and Paus, R. 2001. Controls of hair follicle cycling. Physiol. Rev. 81, 449-494.   DOI
41 Todes-Taylor, N., Turner, R., Wood, G. S., Stratte, P. T. and Morhenn, V. B. 1984. T cell subpopulations in alopecia areata. J. Am. Acad. Dermatol. 11, 216-223.   DOI
42 Trink, A., Sorbellini, E., Bezzola, P., Rodella, L., Rezzani, R., Ramot, Y. and Rinaldi, F. 2013. A randomized, doubleblind, placebo- and active-controlled, half-head study to evaluate the effects of platelet-rich plasma on alopecia areata. Br. J. Dermatol. 169, 690-694.   DOI
43 Wang, X., Marr, A. K., Breitkopf, T., Leung, G., Hao, J., Wang, E., Kwong, N., Akhoundsadegh, N., Chen, L., Mui, A., Carr, N., Warnock, G. L., Shapiro, J. and McElwee, K. J. 2014. Hair follicle mesenchyme-associated PD-L1 regulates T-cell activation induced apoptosis: a potential mechanism of immune privilege. J. Invest Dermatol. 134, 736-745.   DOI
44 Lattouf, C., Jimenez, J. J., Tosti, A., Miteva, M., Wikramanayake, T. C., Kittles, C., Herskovitz, I., Handler, M. Z., Fabbrocini, G. and Schachner, L. A. 2015. Treatment of alopecia areata with simvastatin/ezetimibe. J. Am. Acad. Dermatol. 72, 359-361.   DOI
45 Acikgoz, G., Ozmen, I., Cayirli, M., Yeniay, Y. and Kose, O. 2014. Pulse methylprednisolone therapy for the treatment of extensive alopecia areata. J. Dermatolog. Treat. 25, 164-166.   DOI
46 Alkhalifah, A., Alsantali, A., Wang, E., McElwee, K. J. and Shapiro, J. 2010. Alopecia areata update: part I. Clinical picture, histopathology, and pathogenesis. J. Am. Acad. Dermatol. 62, 177-188, quiz 189-190.   DOI
47 Wasserman, D., Guzman-Sanchez, D. A., Scott, K. and McMichael, A. 2007. Alopecia areata. Int. J. Dermatol. 46, 121-131.   DOI
48 Johansson, M. H. and Hoglund, P. 2006. The dynamics of natural killer cell tolerance. Semin Cancer Biol. 16, 393-403.
49 Kakourou, T., Karachristou, K. and Chrousos, G. 2007. A case series of alopecia areata in children: impact of personal and family history of stress and autoimmunity. J. Eur. Acad. Dermatol. Venereol. 21, 356-359.   DOI
50 Kumamoto, T., Shalhevet, D., Matsue, H., Mummert, M. E., Ward, B. R., Jester, J. V. and Takashima, A. 2003. Hair follicles serve as local reservoirs of skin mast cell precursors. Blood 102, 1654-1660.   DOI
51 Li, S. F., Zhang, X. T., Qi, S. L., Ye, Y. T., Cao, H., Yang, Y. Q., McElwee, K. J. and Zhang, X. 2015. Allergy to dust mites may contribute to early onset and severity of alopecia areata. Clin. Exp. Dermatol. 40, 171-176.   DOI
52 Goh, C., Finkel, M., Christos, P. J. and Sinha, A. A. 2006. Profile of 513 patients with alopecia areata: associations of disease subtypes with atopy, autoimmune disease and positive family history. J. Eur. Acad. Dermatol. Venereol. 20, 1055-1060.   DOI
53 Li, Y., Yan, B., Wang, H., Li, H., Li, Q., Zhao, D., Chen, Y., Zhang, Y., Li, W., Zhang, J., Wang, S., Shen, J., Li, Y., Guindi, E. and Zhao, Y. 2015. Hair regrowth in alopecia areata patients following Stem Cell Educator therapy. BMC Med. 13, 87.   DOI
54 Long, E. O. 1999. Regulation of immune responses through inhibitory receptors. Annu. Rev. Immunol. 17, 875-904.   DOI
55 Gasser, S. and Raulet, D. H. 2006. Activation and self-tolerance of natural killer cells. Immunol. Rev. 214, 130-142.   DOI
56 Gilhar, A., Landau, M., Assy, B., Shalaginov, R., Serafimovich, S. and Kalish, R. S. 2001. Melanocyte-associated T cell epitopes can function as autoantigens for transfer of alopecia areata to human scalp explants on Prkdc (scid) mice. J. Invest Dermatol. 117, 1357-1362.   DOI
57 Gilhar, A. and Kalish, R. S. 2006. Alopecia areata: a tissue specific autoimmune disease of the hair follicle. Autoimmun Rev. 5, 64-69.   DOI
58 Gilhar, A., Paus, R. and Kalish, R. S. 2007. Lymphocytes, neuropeptides, and genes involved in alopecia areata. J. Clin. Invest. 117, 2019-2027.   DOI
59 Gilhar, A., Etzioni, A. and Paus, R. 2012. Alopecia areata. N Engl. J. Med. 366, 1515-1525.   DOI
60 Gregoriou, S., Papafragkaki, D., Kontochristopoulos, G., Rallis, E., Kalogeromitros, D. and Rigopoulos, D. 2010. Cytokines and other mediators in alopecia areata. Mediators Inflamm. 2010, 928030.
61 Gulec, A. T., Tanriverdi, N., Duru, C., Saray, Y. and Akcali, C. 2004. The role of psychological factors in alopecia areata and the impact of the disease on the quality of life. Int. J. Dermatol. 43, 352-356.   DOI
62 Guttman-Yassky, E., Ungar, B., Noda, S., Suprun, M., Shroff, A., Dutt, R., Khattri, S., Min, M., Mansouri, Y., Zheng, X., Estrada, Y. D., Singer, G. K., Suarez-Farinas, M., Krueger, J. G. and Lebwohl, M. G. 2016. Extensive alopecia areata is reversed by IL-12/IL-23p40 cytokine antagonism. J. Allergy Clin. Immunol. 137, 301-304.   DOI
63 Holsboer, F. and Ising, M. 2008. Central CRH system in depression and anxiety--evidence from clinical studies with CRH1 receptor antagonists. Eur. J. Pharmacol. 583, 350-357.   DOI
64 Han, Y. M., Sheng, Y. Y., Xu, F., Qi, S. S., Liu, X. J., Hu, R. M., Miao, Y., Huang, G. Q. and Yang, Q. P. 2015. Imbalance of T-helper 17 and regulatory T cells in patients with alopecia areata. J. Dermatol. 42, 981-988.   DOI
65 Harbuz, M. S., Richards, L. J., Chover-Gonzalez, A. J., Marti-Sistac, O. and Jessop, D. S. 2006. Stress in autoimmune disease models. Ann. NY Acad. Sci. 1069, 51-61.   DOI
66 Higgins, E., Al Shehri, T., McAleer, M. A., Conlon, N., Feighery, C., Lilic, D. and Irvine, A. D. 2015. Use of ruxolitinib to successfully treat chronic mucocutaneous candidiasis caused by gain-of-function signal transducer and activator of transcription 1 (STAT1) mutation. J. Allergy Clin. Immunol. 135, 551-553.   DOI
67 Inui, S., Nakajima, T., Toda, N. and Itami, S. 2009. Fexofenadine hydrochloride enhances the efficacy of contact immunotherapy for extensive alopecia areata: Retrospective analysis of 121 cases. J. Dermatol. 36, 323-327.   DOI
68 Inui, S. and Itami, S. 2015. Contact immunotherapy-resistant alopecia areata totalis/universalis reactive to topical corticosteroid. J. Dermatol. 42, 937-939.   DOI
69 Ito, N., Ito, T., Betterman, A. and Paus, R. 2004. The human hair bulb is a source and target of CRH. J. Invest Dermatol. 122, 235-237.   DOI
70 Ito, N., Ito, T., Kromminga, A., Bettermann, A., Takigawa, M., Kees, F., Straub, R. H. and Paus, R. 2005. Human hair follicles display a functional equivalent of the hypothalamic-pituitary-adrenal axis and synthesize cortisol. Faseb J. 19, 1332-1334.   DOI
71 Ito, T., Ito, N., Saatoff, M., Hashizume, H., Fukamizu, H., Nickoloff, B. J., Takigawa, M. and Paus, R. 2008. Maintenance of hair follicle immune privilege is linked to prevention of NK cell attack. J. Invest Dermatol. 128, 1196-1206.   DOI
72 Ito, N., Sugawara, K., Bodo, E., Takigawa, M., van Beek, N., Ito, T. and Paus, R. 2010. Corticotropin-releasing hormone stimulates the in situ generation of mast cells from precursors in the human hair follicle mesenchyme. J. Invest Dermatol. 130, 995-1004.   DOI
73 Ito, T., Ito, N., Bettermann, A., Tokura, Y., Takigawa, M. and Paus, R. 2004. Collapse and restoration of MHC class-I-dependent immune privilege: exploiting the human hair follicle as a model. Am. J. Pathol. 164, 623-634.   DOI
74 Ito, T., Ito, N., Saathoff, M., Bettermann, A., Takigawa, M. and Paus, R. 2005. Interferon-gamma is a potent inducer of catagen-like changes in cultured human anagen hair follicles. Br. J. Dermatol. 152, 623-631.   DOI
75 Ito, T., Meyer, K. C., Ito, N. and Paus, R. 2008. Immune privilege and the skin. Curr. Dir. Autoimmun. 10, 27-52.
76 Ito, T. and Tokura, Y. 2014. The role of cytokines and chemokines in the T-cell-mediated autoimmune process in alopecia areata. Exp. Dermatol. 23, 787-791.   DOI
77 Jabbari, A., Dai, Z., Xing, L., Cerise, J. E., Ramot, Y., Berkun, Y., Sanchez, G. A., Goldbach-Mansky, R., Christiano, A. M., Clynes, R. and Zlotogorski, A. 2015. Reversal of Alopecia Areata Following Treatment With the JAK1/2 Inhibitor Baricitinib. EBioMedicine 2, 351-355.   DOI
78 Kaufman, G., d'Ovidio, R., Kaldawy, A., Assy, B., Ullmann, Y., Etzioni, A., Paus, R. and Gilhar, A. 2010. An unexpected twist in alopecia areata pathogenesis: are NK cells protective and CD49b+ T cells pathogenic? Exp. Dermatol. 19, e347-349.   DOI
79 Kang, H., Wu, W. Y., Lo, B. K., Yu, M., Leung, G., Shapiro, J. and McElwee, K. J. 2010. Hair follicles from alopecia areata patients exhibit alterations in immune privilege-associated gene expression in advance of hair loss. J. Invest Dermatol. 130, 2677-2680.   DOI
80 Katsarou-Katsari, A., Singh, L. K. and Theoharides, T. C. 2001. Alopecia areata and affected skin CRH receptor upregulation induced by acute emotional stress. Dermatology 203, 157-161.   DOI
81 Keren, A., Shemer, A., Ullmann, Y., Paus, R. and Gilhar, A. 2015. The PDE4 inhibitor, apremilast, suppresses experimentally induced alopecia areata in human skin in vivo. J Dermatol. Sci. 77, 74-76.   DOI
82 Kim, H. S., Cho, D. H., Kim, H. J., Lee, J. Y., Cho, B. K. and Park, H. J. 2006. Immunoreactivity of corticotropinreleasing hormone, adrenocorticotropic hormone and alphamelanocyte- stimulating hormone in alopecia areata. Exp. Dermatol. 15, 515-522.   DOI
83 Maurer, M., Fischer, E., Handjiski, B., von Stebut, E., Algermissen, B., Bavandi, A. and Paus, R. 1997. Activated skin mast cells are involved in murine hair follicle regression (catagen). Lab Invest. 77, 319-332.
84 Lucas, P., Bodemer, C., Barbarot, S., Vabres, P., Royer, M. and Mazereeuw-Hautier, J. 2016. Methotrexate in Severe Childhood Alopecia Areata: Long-term Follow-up. Acta. Derm. Venereol. 96, 102-103.   DOI
85 Mackay-Wiggan, J., Jabbari, A., Nguyen, N., Cerise, J. E., Clark, C., Ulerio, G., Furniss, M., Vaughan, R., Christiano, A. M. and Clynes, R. 2016. Oral ruxolitinib induces hair regrowth in patients with moderate-to-severe alopecia areata. JCI Insight. 1, 1-5.
86 Madani, S. and Shapiro, J. 2000. Alopecia areata update. J. Am. Acad. Dermatol. 42, 549-566.   DOI
87 Messenger, A. G., McKillop, J., Farrant, P., McDonagh, A. J. and Sladden, M. 2012. British Association of Dermatologists' guidelines for the management of alopecia areata 2012. Br. J. Dermatol. 166, 916-926.   DOI
88 Noso, S., Park, C., Babaya, N., Hiromine, Y., Harada, T., Ito, H., Taketomo, Y., Kanto, K., Oiso, N., Kawada, A., Suzuki, T., Kawabata, Y. and Ikegami, H. 2015. Organ specificity in autoimmune diseases: thyroid and islet autoimmunity in alopecia areata. J. Clin. Endocrinol. Metab. 100, 1976-1983.   DOI
89 Pandhi, D., Singal, A., Gupta, R. and Das, G. 2009. Ocular alterations in patients of alopecia areata. J. Dermatol. 36, 262-268.   DOI
90 Ohyama, M., Shimizu, A., Tanaka, K. and Amagai, M. 2010. Experimental evaluation of ebastine, a second-generation anti-histamine, as a supportive medication for alopecia areata. J. Dermatol. Sci. 58, 154-157.   DOI
91 Papp, K. A., Krueger, J. G., Feldman, S. R., Langley, R. G., Thaci, D., Torii, H., Tyring, S., Wolk, R., Gardner, A., Mebus, C., Tan, H., Luo, Y., Gupta, P., Mallbris, L. and Tatulych, S. 2016. Tofacitinib, an oral Janus kinase inhibitor, for the treatment of chronic plaque psoriasis: Long-term efficacy and safety results from 2 randomized phase-III studies and 1 open-label long-term extension study. J. Am. Acad. Dermatol. 74, 841-850.   DOI
92 Paus, R., Slominski, A. and Czarnetzki, B. M. 1993. Is alopecia areata an autoimmune-response against melanogenesisrelated proteins, exposed by abnormal MHC class I expression in the anagen hair bulb? Yale J. Biol. Med. 66, 541-554.
93 Paus, R., Botchkarev, V. A., Botchkareva, N. V., Mecklenburg, L., Luger, T. and Slominski, A. 1999. The skin POMC system (SPS). Leads and lessons from the hair follicle. Ann. NY Acad. Sci. 885, 350-363.
94 Paus, R., Nickoloff, B. J. and Ito, T. 2005. A 'hairy' privilege. Trends Immunol. 26, 32-40.   DOI
95 Peters, E. M., Liotiri, S., Bodo, E., Hagen, E., Biro, T., Arck, P. C. and Paus, R. 2007. Probing the effects of stress mediators on the human hair follicle: substance P holds central position. Am. J. Pathol. 171, 1872-1886.   DOI
96 Petukhova, L., Duvic, M., Hordinsky, M., Norris, D., Price, V., Shimomura, Y., Kim, H., Singh, P., Lee, A., Chen, W. V., Meyer, K. C., Paus, R., Jahoda, C. A., Amos, C. I., Gregersen, P. K. and Christiano, A. M. 2010. Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature 466, 113-117.   DOI