Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.10.1202

Evidence for Polyphyletic Origin of the Members of the Subsection IV Cyanobacteria as Determined by 16S rRNA Analysis  

Shin, Yong Kook (School of Integrated Oriental Medical Bioscience, Semyung University)
Seo, Pil-Soo (Environment-Friendly Agriculture Division, Sunchang Agricultural Development & Technology Center)
Publication Information
Journal of Life Science / v.26, no.10, 2016 , pp. 1202-1206 More about this Journal
Abstract
Unicellular cyanobacterial strains of Subsections I and II and filamentous cyanobacterial strains of Subsection III have been shown to be polyphyletic, heterocystous strains of Subsections IV and V, both of which were previously reported to be monophyletic. In this study, the small subunit ribosomal RNA (16S rRNA) sequences of 13 strains of cyanobacteria - one strain, Oscillatoria nigro-viridis PCC7112, of the Subsection III, 6 strains including genus Anabaena, Nostoc, Tolypothrix, Calothrix and Scytonema of the Subsection IV, and 6 strains including genus Hapalosiphon, Fischerella and Chlorogloeopsis of the Subsection V - were determined. The phylogenetic analysis of cyanobacteria was carried out using the 16S rRNA sequences. The results of the phylogenetic analyses of 16S rRNA sequences, based on Neighbour-joining, maximum-parsimony, and maximum-likelihood methods, indicated that the members of Subsection IV were not monophyletic but polyphyletic. In addition, the phylogenetic results strongly indicated that the genus Scytonema in Subsection IV could be a common ancestor of heterocystous cyanobacteria in Subsection IV and V. Furthermore, the phylogenetic analyses revealed that the genus Anabaena could be phylogenetically diverse and that cyanobacterial strains in Subsection IV might be polyphyletic, whereas those in Subsection V could be monophyletic, as reported before. The results for the genus Anabaena indicate that it should be reclassified.
Keywords
Anabaena; cyanobacteria; phylogenetic analyses; Scytonema; small subunit rRNA;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bryant, D. A. 1994. The molecular biology of cyanobacteria. pp. 881. Kluwer Academic: Dordrecht, The Netherlands.
2 Castenholz, R. 1992. Species usage, concept, and evolution in cyanobacteria (blue-green algae). J. Phycol. 28, 737-745.   DOI
3 Castenholz, R. 2001. Phylum BX. Cyanobacteria oxygenic photosynthetic bacteria, Vol. 3, pp. 473-599. In: Boone, D. and Castenholz, R. (eds.), Bergey's Manual of Systematic Bacteriology 2nd edn. Springer-Verlag: New York, USA.
4 Castenholz, R. and Waterbury, J. 1989. Group I cyanobacteria, Vol. 3. pp. 1710-1728. In:Krieg, N. R. and Holt, J. G. (eds), Bergey's Manual of Systematic Bacteriology. Williams and Wilkins: Baltimore, USA.
5 Douglas, S. E. and Turner, S. 1991. Molecular evidence for the origin of plastids from a cyanobacterium-like ancestor. J. Mol. Evol. 33, 267-273.   DOI
6 Felsenstein, J. 1989. PHYLIP-Phylogeny inference package (version 3.2). Cladisticts 5, 164-166.
7 Felsenstein, J. and Churchill, G. A. 1996. A hidden Markov model approach to variation among sites in rate of evolution. Mol. Biol. Evol. 13, 93-104.   DOI
8 Giovannoni, S., Turner, S., Olsen, G. J., Barns, S., Lane, D. J. and Pace, N. R. 1988. Evolutionary relationships among cyanobacteria and green chloroplasts. J. Bacteriol. 170, 3584-3592.   DOI
9 Henson, B. J., Watson, L. E. and Barnum, S. R. 2002. Molecular differentiation of hetero cyanobacteria, Nostoc and Anabaena, based on complete nifD sequences. Curr. Microbiol. 45, 161-164.   DOI
10 IAM Catalogue of Strains. 1998. pp. 291-294. Editorial Board of IAM Catalogue of Strains. (eds.), Center for Cellular and Molecular Research. Institute of Molecular and Cellular Biosciences, The University of Tokyo.
11 Ishida, T., Watanabe, M. M., Sugiyama, J. and Yokota, A. 2001. Evidence for polyphyletic origin of the members of the orders of Oscillatoriales and Pleurocapsales as determined by 16S rDNA analysis. FEMS Microbiol. Lett. 201, 79-82.   DOI
12 Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequence. J. Mol. Evol. 16, 111-120.   DOI
13 Kumar, S., Tamura, K., Jacobsen, I. B. and Nei, M. 2001. Mega2: molecular evolutionary genetics analysis software. Bioinformatics 17, 1244-1245.   DOI
14 Page, R. D. M. 1996. TREEVIEW: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12, 357-358.
15 Rippka, R. 1988. Recognition and identification of cyanobacteria. Methods Enzymol. 167, 28-67.   DOI
16 Rippka, R., De Reuelles, J., Waterbury, J., Herdman, H. and Stanier, R. 1979. Generic assignments, strain histories, and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1-61.
17 Rippka, R. and Herdman, H. 1992. Pasteur culture collection of cyanobacteria catalogue and taxonomic handbook I. Catalogue of strains. Institute Pasteur: Paris, France.
18 Robertson, B. R., Tezuka, N., and Watanabe, M. M. 2001. Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. Int. J. Syst. Bacteriol. 51, 861-871.   DOI
19 Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic tree. Mol. Biol. Evol. 4, 406-425.
20 Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680.   DOI
21 Turner, S., Burger-Wiersma, T., Giovannoni, S., Mur, L. R. and Pace, N. R. 1989. The relationship of a prochlorophyte Prochlorothrix hollandica to green chloroplasts. Nature 337, 380-382.   DOI
22 Turner, S., Pryer, K. M., Miao, V. P. W. and Palmer, J. D. 1999. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J. Eukaryot. Microbiol. 46, 327-338.   DOI
23 Wilmote, A. 1994. Molecural evolution and taxonomy of cyanobacteria, pp. 1-25. In: Bryant, D. (eds.), The molecural biology of cyanobacteria. Kluwer Academic Publisher, The Netherlands.
24 Wilmotte, A. and Herdman, M. 2001. Phylogenetic relationships among the cyanobacteria based on 16S rRNA sequences. The Archaea and deeply Braching and Phototropic Bacteria, Vol. 1, pp. 487-493. In: Boone, D. R., Castenholz, R. W. and Garrity, G. M. (eds.), Bergey's Manual of Systematic Bacteriology, 2nd edn, Springler-Verlag, New York.
25 Wilmotte, A., Turner, S., Van de Peer, Y. and Pace, N. R. 1992. Taxonomic study of marine Oscillatoriacean strains (cyanobacteria) with narrow trichomes. II. Nucleotide sequence analysis of the 16S ribosomal RNA. J. Phycol. 28, 828-838.   DOI
26 Wilmote A., Van der Auwera, G. and De Watcher, R. 1993. Structure of 16S ribosomal RNA of the thermophilic cyanobacterium Chlorogloepsis HTF ('Mastigocladus laminosus HTF') strains PCC 7518, and phylogenetic analysis. FEBS Lett. 371, 96-100.
27 Turner, S. 1997. Molecural systematics of oxygenic photosynthetic bacteria. Plant Syst. Evol. 11, 13-52.   DOI