Browse > Article
http://dx.doi.org/10.5352/JLS.2015.25.2.151

Effects of the Acute Exposure Oxytetracycline on the Behavior and Endocrine Response in Adult Zebrafish  

Ko, Eun Seong (Department of Marine Life Sciences, School of Marine Biomedical Sciences, College of Ocean Sciences, Jeju National University)
Lee, Seungheon (Department of Marine Life Sciences, School of Marine Biomedical Sciences, College of Ocean Sciences, Jeju National University)
Publication Information
Journal of Life Science / v.25, no.2, 2015 , pp. 151-157 More about this Journal
Abstract
Zebrafish (Danio rerio) has been more widely used to study pharmacology. Oxytectracycline (OTC) is a broad-spectrum antibiotic and works by interfering with the ability to produce essential proteins of bacteria. The aim of this study was to identify the effects of exposure to OTC on behavioral changes or endocrine response in zebrafish. The behavioral effects of exposure to OTC (50, 100 or 200 mg/l) were characterized in several novelty-based paradigms such as the novel tank or open field test in zebrafish. Moreover, to investigate effects of exposure to OTC on endocrine response, we measured whole-body cortisol level using cortisol ELISA kit. As results of novel tank test, duration in top and immobile duration were significantly increased by the exposure to OTC in a concentration-dependent manner (p<0.05). In addition, moving distance, highly mobile, velocity and zone transition were significantly decreased by the exposure to OTC in a concentration-dependent manner (p<0.05). As results of open field test, the exposure to OTC increased immobile duration significantly (p<0.05). However, moving distance, mobile duration and velocity were significantly decreased by the exposure to OTC in a concentration-dependent manner (p<0.05). Besides, the exposure to OTC elevated whole-body cortisol levels in zebrafish. These results suggest that the exposure to OTC may induce chemical stress in zebrafish.
Keywords
Behavioral test; chemical stress; cortisol; oxytetracycline; zebrafish;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Aluru, N. and Vijayan, M. M. 2009. Stress transcriptomics in fish: a role for genomic cortisol signaling. Gen. Comp. Endocrinol. 164, 142-150.   DOI
2 Ambili, T. R., Saravanan, M., Ramesh, M., Abhijith, D. B. and Poopal, R. K. 2013. Toxicological effects of the antibiotic oxytetracycline to an Indian major carp Labeo rohita. Arch. Environ. Contam. Toxicol. 64, 494-503.   DOI
3 Cachat, J., Kyzar, E. J., Collins, C., Gaikwad, S., Green, J., Roth, A., El-Ounsi, M., Davis, A., Pham, M., Landsman, S., Stewart, A. M. and Kalueff, A. V. 2013. Unique and potent effects of acute ibogaine on zebrafish: the developing utility of novel aquatic models for hallucinogenic drug research. Behav. Brain Res. 236, 258-269.   DOI
4 Chern, C. J. and Beutler, E. 1976. Biochemical and electrophoretic studies of erythrocyte pyridoxine kinase in white and black Americans. Am. J. Hum. Genet. 28, 9-17.
5 Demers, N. E. and Bayne, C. J. 1997. The immediate effects of stress on hormones and plasma lysozyme in rainbow trout. Dev. Comp. Immunol. 21, 363-373.   DOI
6 Engelsma, M. Y., Huising, M. O., van Muiswinkel, W. B., Flik, G., Kwang, J., Savelkoul, H. F. and Verburg-van Kemenade, B. M. 2002. Neuroendocrine-immune interactions in fish: a role for interleukin-1. Vet. Immunol. Immunopathol. 87, 467-479.   DOI
7 Fujiwara, T., Cherrington, A. D., Neal, D. N. and McGuinness, O. P. 1996. Role of cortisol in the metabolic response to stress hormone infusion in the conscious dog. Metabolism 45, 571-578.   DOI
8 Gozubuyuk, A., Ozpolat, B., Cicek, A. F., Caylak, H., Yucel, O., Kavakli, K., Gurkok, S. and Genc, O. 2010. Comparison of side effects of oxytetracycline and talc pleurodesis: an experimental study. J. Cardiothorac. Surg. 5, 128.   DOI
9 Grossman, L., Utterback, E., Stewart, A., Gaikwad, S., Chung, K. M., Suciu, C., Wong, K., Elegante, M., Elkhayat, S., Tan, J., Gilder, T., Wu, N., Dileo, J., Cachat, J. and Kalueff, A. V. 2010. Characterization of behavioral and endocrine effects of LSD on zebrafish. Behav. Brain Res. 214, 277-284.   DOI
10 Kalueff, A. V., Gebhardt, M., Stewart, A. M., Cachat, J. M., Brimmer, M., Chawla, J. S., Craddock, C., Kyzar, E. J., Roth, A., Landsman, S., Gaikwad, S., Robinson, K., Baatrup, E., Tierney, K., Shamchuk, A., Norton, W., Miller, N., Nicolson, T., Braubach, O., Gilman, C. P., Pittman, J., Rosemberg, D. B., Gerlai, R., Echevarria, D., Lamb, E., Neuhauss, S. C., Weng, W., Bally-Cuif, L. and Schneider, H. 2013. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish 10, 70-86.   DOI
11 Kist, L. W., Piato, A. L., da Rosa, J. G., Koakoski, G., Barcellos, L. J., Yunes, J. S., Bonan, C. D. and Bogo, M. R. 2011. Acute exposure to microcystin-producing cyanobacterium microcystis aeruginosa alters adult zebrafish (Danio rerio) swimming performance parameters. J. Toxicol. 2011, 280304.
12 Parry, W. H., Martorano, F. and Cotton, E. K. 1976. Management of life-threatening asthma with intravenous isoproterenol infusions. Am. J. Dis. Child. 130, 39-42.
13 Korelitz, B. I. and Sommers, S. C. 1976. Responses to drug therapy in ulcerative colitis. Evaluation by rectal biopsy and mucosal cell counts. Am. J. Dig. Dis. 21, 441-447.   DOI
14 Kyzar, E., Stewart, A. M., Landsman, S., Collins, C., Gebhardt, M., Robinson, K. and Kalueff, A. V. 2013. Behavioral effects of bidirectional modulators of brain monoamines reserpine and d-amphetamine in zebrafish. Brain Res. 1527, 108-116.   DOI
15 Nguyen, M., Yang, E., Neelkantan, N., Mikhaylova, A., Arnold, R., Poudel, M. K., Stewart, A. M. and Kalueff, A. V. 2013. Developing 'integrative' zebrafish models of behavioral and metabolic disorders. Behav. Brain Res. 256, 172-187.   DOI
16 Petrenko, I. U., Titov, V. and Vladimirov Iu, A. 1995. Generation of active forms of oxygen by antibiotics of the tetracycline series during tetracycline catalysis of oxidation of ferrous iron. Antibiot. Khimioter. 40, 3-8.
17 Sunyer, J. O. and Tort, L. 1995. Natural hemolytic and bactericidal activities of sea bream Sparus aurata serum are effected by the alternative complement pathway. Vet. Immunol. Immunopathol. 45, 333-345.   DOI
18 Tort, L. 2011. Stress and immune modulation in fish. Dev. Comp. Immunol. 35, 1366-1375.   DOI
19 Tort, L. Stress and immune modulation in fish. Dev. Comp. Immunol. 35, 1366-1375.   DOI
20 Westerfield, M. 2007. Journal. p.^pp. Fourth Edition ed., Eugene, USA.
21 Williams, L. R., Wong, K., Stewart, A., Suciu, C., Gaikwad, S., Wu, N., Dileo, J., Grossman, L., Cachat, J., Hart, P. and Kalueff, A. V. 2012. Behavioral and physiological effects of RDX on adult zebrafish. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 155, 33-38.   DOI