Browse > Article
http://dx.doi.org/10.5352/JLS.2015.25.2.130

Coexpression of Alginate Lyase with Hyperthermophilic Archaea Chaperonin in E. coli  

Kim, Se Won (Department of Biomaterial Control, Dong-Eui University)
Kim, Gun-Do (Department of Microbiology, College of Natural Sciences, Pukyong National University)
Nam, Soo-Wan (Department of Biomaterial Control, Dong-Eui University)
Publication Information
Journal of Life Science / v.25, no.2, 2015 , pp. 130-135 More about this Journal
Abstract
When the alginate lyase gene (aly) from Pseudoalteromonas elyakovii IAM 14594 was expressed in E. coli, most of the gene product expressed was produced as aggregated insoluble particles known as inclusion bodies. In order to produce with an elevated level of a soluble and active form of alginate lyase in E. coli, the hyperthermophilic chaperonins (ApCpnA and ApCpnB) from archaeon Aeropyrum pernix K1 were employed as the coexpression partners. At $25^{\circ}C$ culture temperature, the level of alginate lyase activity was increased from 10.1 unit/g-soluble protein in aly single expression to 83.1 unit/g-soluble protein by coexpressing with ApCpnA and to 100.3 unit/g-soluble protein by coexpressing with ApCpnB. This results indicate that the coexpression of aly with ApCpnA and ApCpnB revealed a marked enhancement, about 8~10 fold, in the production of alginate lyase as a soluble and active form. Based on the results of various examinations on the expression variables, the optimal conditions for the maximal production of alginate lyase were determined as 1.0 mM IPTG for the inducer concentration, $25^{\circ}C$ for the culture temperature after IPTG induction, and ApCpnB for the coexpression partner. The coexpression set in the present report may be useful in the industrial production of functionally or medically important recombinant proteins in E. coli.
Keywords
Aeropyrum pernix; alginate lyase; chaperonin; coexpression; E. coli;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Wong, T. Y., Preston. L. A. and Schiller, N. L. 2000. Alginate lyase: Review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Ann. Rev. Microbiol. 54, 289-340.   DOI
2 Yoon, H. J., Hashimoto, W., Miyake, O., Okamoto, M., Mikami, B. and Murata, K., 2000. Overexpression in Escherichia coli, purification, and characterization of Sphingomonas sp. A1 alginate lyases. Protein Expr. Purif. 19, 84-90.   DOI
3 Zhao, H. L., Yang, J., Chen, X. L., Su, H. N., Zhang, X. Y., Huang, F., Zhou, B. C. and Xie, B. B. 2014. Optimization of fermentation conditions for the production of the M23 protease Pseudoalterin by deep-sea Pseudoalteromonas sp. CF6-2 with artery powder as an inducer. Molecules 19, 4779-4790.   DOI
4 Bigotti, M. G. and Clarke, A. R. 2005. Cooperativity in the thermosome. J. Mol. Biol. 348, 13-26.   DOI
5 Chavagnat, F., Duez, C., Guinand, M., Potin, P., Barbeyron, T., Henrissat, B., Wallach, J. and Ghuysen, J. M. 1996. Cloning, sequencing and overexpression in Escherichia coli of the alginate lyase-encoding aly gene of Pseudomonas alginovora : identification of three classes of alginate lyases. Biochem. J. 319, 575-583   DOI
6 Haug, A., Larsen, B. and Baardseth, E. 1969. Comparison of the constitution of alginates from different sources. Proc. Int. Seaweed Symp. 6, 443-451.
7 Frydman, J. 2001. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu. Rev. Biochem. 70, 603-647.   DOI
8 Garcia-Fruitos, E., Martinez-Alonso, M., Gonzalez-Montalban, N., Valli, M., Mattanovich, D. and Villaverde, A. 2007. Divergent genetic control of protein solubility and conformational quality in Escherichia coli. J. Mol. Biol. 374, 195-205.   DOI
9 Gutsche, I., Essen, L. O. and Baumeister, W. 1999. Group II chaperonins: new TRiC (k)s and turns of a protein folding machine. J. Mol. Biol. 293, 295-312.   DOI
10 Kim, J. H., Lee, J. W., Shin, E. J. and Nam, S. W. 2011. Cooperativity of $\alpha$- and $\beta$-subunits of group ІІ chaperonin from the hyperthermophilic archaeum Aeropyrum pernix K1. J. Microbiol. Biotechnol. 21, 212-217.   DOI
11 Kohda, J., Endo, Y., Okumura, N., Kurokawa, Y., Nishihara, K., Yanagi, H., Yura, T., Fukuda, H. and Kondo, A. 2002. Improvement of productivity of active form of glutamate racemase in Escherichia coli by coexpression of folding accessory proteins. J. Biochem. Eng. 10, 39-45.   DOI
12 Kurokawa, Y., Yanagi, H. and Yura, T. 2000. Overexpression of protein disulfide isomerase DsbC stabilizes multiple-disulfide-bonded recombinant protein produced and transported to the periplasm in Escherichia coli. Appl. Environ. Microbiol. 66, 3960-3965.   DOI
13 Mandel, M. and Higa, A. 1970. Calcium-dependent bacteriophage DNA infection. J. Mol. Biol. 53, 159-162.   DOI
14 Lee, J. W., Kim, S. W., Kim, J. H., Jeon, S. J., Kwon, H. J., Kim, B. W. and Nam, S. W. 2013. Functional characterization of the $\alpha$- and $\beta$-subunits of a group II chaperonin from Aeropyrum pernix K1. J. Microbiol. Biotechnol. 23, 818-825.   DOI
15 Ma, L. Y., Chi, Z. M., Li, J. and Wu, L. F. 2008. Overexpression of alginate lyase of Pseudoalteromonas elyakovii in Escherichia coli, purification, and characterization of the recombinant alginate lyase. World J. Microbiol. Biotechnol. 24, 89-96.   DOI
16 Makino, T., Skretas, G. and Georgiou, G. 2011. Strain engineering for improved expression of recombinant proteins in bacteria. Microb. Cell Fact. 10, 32-41.   DOI
17 Martinez-Alonso, M., Garcia-Fruitos, E., Ferrer-Miralles, N., Rinas, U. and Villaverde, A. 2010. Side effects of chaperone gene co-expression in recombinant protein production. Microb. Cell Fact. 9, 64-69.   DOI
18 Nishihara, K., Kanemori, M., Yanagi, H. and Yura, T. 2000. Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Appl. Environ. Microbiol. 66, 884-889.   DOI
19 Priya, S., Sharma, S. K. and Goloubinoff, P. 2013. Molecular chaperones as enzymes that catalytically unfold misfolded polypeptides. FEBS Lett. 587, 1981-1987.   DOI
20 Qiu, J., Swartz, J. R. and Georgiou, G. 1998. Expression of active human tissue-type plasminogen activator in Escherichia coli. Appl. Environ. Microbiol. 64, 4891-4896.
21 Shuo-shuo, C., Xue-zheng, L. and Ji-hong, S. 2011. Effects of co-expression of molecular chaperones on heterologous soluble expression of the cold-active lipase Lip-948. Protein Expr. Purif. 77, 166-172.   DOI
22 Sawabe, T., Takahashi, H., Ezura, Y. and Gacesa, P. 2001. Cloning, sequence analysis and expression of Pseudoalteromonas elyakovii IAM 14594 gene (alyPEEC) encoding the extracellular alginate lyase. Carbohydr. Res. 335, 11-21.   DOI
23 Sawabe, T., Takahasi, H., Saeki, H., Niwa, K. and Aono, H. 2007. Enhanced expression of active recombinant alginate lyase AlyPEEC cloned from a marine bacterium Pseudoalteromonas elyakovii in Escherichia coli by calcium compounds. Enzyme Microb. Technol. 40, 285-291.   DOI
24 Shin, E. J., Park, S. L., Jeon, S. J., Lee, J. W., Kim, Y. T., Kim, Y. H. and Nam, S. W. 2006. Effect of molecular chaperones on the soluble expression of alginate lyase in E. coli. Biotechnol. Bioprocess Eng. 11, 414-419.   DOI
25 Son, H. J., Shin, E. J., Nam, S. W., Kim, D. E. and Jeon, S. J. 2007. Properties of the alpha subunit of a chaperonin from the hyperthermophilic Crenarchaeon Aeropyrum pernix K1. FEMS Microbiol. Lett. 266, 103-109.   DOI
26 Vuillemin, M., Malbert, Y., Laguerre, S., Remaud-Simeon, M. and Moulis, C. 2014. Optimizing the production of an $\alpha$-(1$\rightarrow$2) branching sucrase in Escherichia coli using statistical design. Appl. Microbiol. Biotechnol. 98, 5173-6184.   DOI
27 Wang, J., Jin, W., Hou Y., Niu, X., Zhang, H. and Zhang, Q. 2013. Chemical composition and moisture-absorption/retention ability of polysaccharides extracted from five algae. Int. J. Biol. Macromol. 57, 26-29.   DOI