Browse > Article
http://dx.doi.org/10.5352/JLS.2015.25.11.1290

Growth Characteristics of a Pyruvate Decarboxylase Mutant Strain of Zymomonas mobilis  

Xun, Zhao (School of Biotechnology and Biomolecular Sciences, The University of New South Wales)
Peter L., Rogers (School of Biotechnology and Biomolecular Sciences, The University of New South Wales)
Kwon, Eilhann E. (Department of Environment and Energy at Sejong University)
Jeong, Sang Chul (Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources)
Jeon, Young Jae (School of Biotechnology and Biomolecular Sciences, The University of New South Wales)
Publication Information
Journal of Life Science / v.25, no.11, 2015 , pp. 1290-1297 More about this Journal
Abstract
Studies of the inactivation of a gene encoding pyruvate decarboxylase, pdc, in an ethanol-producing bacterium, Zymomonas mobilis, identified a mutant strain with 50% reduced PDC activity. To evaluate the possibility of a carbon-flux shift from an ethanol pathway toward higher value fermentation products, including pyruvate, succinate, and lactate, fermentation studies were carried out. Despite attempts to silence pdc expression in the wild-type strain ZM4 using cat-inserted pdc and pdc-deleted homologs by electroporation, the strain isolated showed partial gene activation. Fermentation experiments with the PDC mutant strain showed that the reduced expression level of PDC activity resulted in decreased rates of substrate uptake and ethanol production, together with increased pyruvate accumulation of 2.5 g l-1 , although lactate and succinate concentrations were not significantly enhanced in these modified strains. Despite numerous attempts, no strains were isolated in which complete pdc inactivation occurred. This result indicates that the ethanol fermentation pathway of this bacterium is totally dependent on the activity of the PDC enzyme. To ensure a redox balance of intracellular NAD and NADH levels, other enzymes, such as lactate dehydrogenase for lactate, and enzymes involved in the production of succinic acid, such as pyruvate dehydrogenase (PDH) and malic enzymes, may be needed for their increased end-product production.
Keywords
Fermentation; gene inactivation; higher value products; pyruvate decarboxylase; Zymomonas mobilis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yang, S., Tschaplinski, T. J., Engle, N. L., Carroll, S. L., Martin, S. L., Davison, B. H., Palumbo, A. V., Jr Rodriguez, M. and Brown, S. D. 2009b. Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations. BMC Genomics 10, 34.   DOI
2 Zhang, J. 2003 Evolution by gene duplication: an update. Trends Ecol. Evol. 18, 292-298.   DOI
3 Aiba, S., Humphrey, A. E. and Millis, N. 1973. Biochemical Engineering, pp. 65-66. 2nd Edition, Academic Press, Massachusetts.
4 Bringer-Meyer, S., Schimz, K. L. and Sahm, H. 1986. Pyruvate decarboxylase from Zymomonas mobilis. Isolation and partial characterization. Arch. Microbiol. 146, 105-110.   DOI
5 Bubunenko, M., Baker, T. and Court, D. L. 2007. Essentiality of ribosomal and transcription antitermination proteins analyzed by systematic gene replacement in Escherichia coli. J. Bacteriol. 189, 2844-2853.   DOI
6 Fuhrer, T., Fischer, E. and Sauer, U. 2005. Experimental identification and quantification of glucose metabolism in seven bacterial species. J. Bacteriol. 187, 1581-1590.   DOI
7 Goodman, A. E., Rogers, P. L. and Skotnicki, M. L. 1982. Minimal medium for isolation of auxotrophic Zymomonas mutants. Appl. Environ. Microbiol. 44, 496-498.
8 Hannay, K., Marcott, E. M. and Vogel, C. 2008. Buffering by gene duplicates: an analysis of molecular correlates and evolutionary conservation. BMC Genomics 9, 609.   DOI
9 He, M. X., Wu, B. and Qin, H., et al. 2014. Zymomonas mobilis: a novel platform for future biorefineries. Biotechnol. Biofuels 7, 101.   DOI
10 Jeon, Y. J., Svenson, C. J. and Rogers, P. L. 2005. Over-expression of xylulokinase in a xylose-metabolising recombinant strain of Zymomonas mobilis. FEMS Microbiol. Lett. 244, 85-92.   DOI
11 Johns, M. R., Greenfield, P. F. and Doelle, H. W. 1991. Byproducts from Zymomonas mobilis. Adv. Biochem. Eng. Biotechnol. 44, 97-121.
12 Linger, J. G., Adney, W. S. and Darzins, A. 2010. Heterologous expression and extracellular secretion of cellulolytic enzymes in Zymomonas mobilis. Appl. Environ. Microbiol. 76, 6360-6369.   DOI
13 Kerr, A. L., Jeon, Y. J., Svenson, C. J., Rogers, P. L. and Neilan, B. A. 2011. DNA restriction-modification systems in the ethanologen, Zymomonas mobilis ZM4. Appl. Microbiol. Biotechnol. 89, 761-769.   DOI
14 Kim, I. S., Barrow, K. D. and Rogers, P. L. 2000. Kinetic and nuclear magnetic resonance studies of xylose metabolism by recombinant Zymomonas mobilis ZM4 (pZB5). Appl. Environ. Microbiol. 66, 186-193.   DOI
15 Lee, K. Y., Park, J. M., Kim, T. Y., Yun, H. S. and Lee, S. Y. 2010. The genome-scale metabolic network analysis of Zymomonas mobilis ZM4 explains physiological features and suggests ethanol and succinic acid production strategies. Microb. Cell. Fact. 9, 94.   DOI
16 Lupski, J. R., Roth, J. R. and Weinstock, G. M. 1996. Chromosomal duplications in bacteria, fruit flies, and humans. Am. J. Human Genetics. 58, 21-27.
17 Neale, A. D., Scopes, R. K., Wettenhall, R. E. and Hoogenraad, N. J. 1987. Pyruvate decarboxylase of Zymomonas mobilis: isolation, properties, and genetic expression in Escherichia coli. J. Bacteriol. 169, 1024-1028.
18 Panesar, P. S., Marwaha, S. S. and Kennedy, J. F. 2006. Zymomonas mobilis: an alternative ethanol producer. J. Chem. Technol. Biotechnol. 81, 623-635.   DOI
19 Jeon, Y. J., Zhao, X. and Rogers, P. L. 2010. Comparative evaluations of cellulosic raw materials for second generation bioethanol production. Lett. Appl. Microbiol. 51, 518-524   DOI
20 Rogers, P. L., Jeon, Y. J., Lee, K. J. and Lawford, H. G. 2007. Zymomonas mobilis for fuel ethanol and higher value products. Adv. Biochem. Eng. Biotechnol. 108, 263-288.
21 Schmitt, H. D and Zimmermann, F. K. 1982. Genetic analysis of the pyruvate decarboxylase reaction in yeast glycolysis. J. Bacteriol. 151, 1146-1152.
22 Rogers, P. L., Lee, K. J., Skotnicki, M. L. and Tribe, D. E. 1982. Ethanol production by Zymomonas mobilis. Adv. Biochem. Eng. Biotechnol. 23, 37-84.
23 Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Laboratory Press, Cold Spring Harbor, NY.
24 Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J. and Klenk, D. C. 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76-85.   DOI
25 Seo, J. S., Chong, H. Y. and Park, H. S., et al. 2005. The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nat. Biotechnol. 23, 63-68.   DOI
26 Shin, H. S. and Rogers, P. L. 1995. Biotransformation of benzeldedyde to L-phenylacetylcarbinol, an intermediate in L-ephedrine production, by immobilized Candida utilis. Appl. Microbiol. Biotechnol. 44, 7-14.   DOI
27 Tsantili, I. C., Karim, M. N. and Klapa, M. I. 2007. Quantifying the metabolic capabilities of engineered Zymomonas mobilis using linear programming analysis. Microb. Cell Fact. 6, 8.   DOI
28 Weber, C., Farwick, A., Benisch, F., Bart, D., Dietz, H., Subtil, T. and Boles, E. 2010. Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl. Microbiol. Biotechnol. 87, 1303-1315.   DOI
29 Widiastuti, H., Kim, J. Y., Selvarasu, S., Karimi, I. A., Kim, H., Seo, J. S. and Lee, D. Y. 2011. Genome-scale modeling and in silico analysis of ethanologenic bacteria Zymomonas mobilis. Biotechnol. Bioeng. 108, 655-665.   DOI
30 Yang, S., Pappas, K. M. and Hauser, L. J., et al. 2009a. Improved genome annotation for Zymomonas mobilis. Nat. Biotechnol. 27, 893-4.   DOI