Browse > Article
http://dx.doi.org/10.5352/JLS.2015.25.11.1204

Genetic Relationships of Sandfish (Arctoscopus japonicas) from Five Different Areas of Korea and Japan Based on Mitochondrial DNA and Microsatellite Analyses  

Kim, Eun-Mi (Biotechnology Research Division, NFRDI)
Kang, Hyun-Sook (Biotechnology Research Division, NFRDI)
Kang, Jung-Ha (Biotechnology Research Division, NFRDI)
Kim, Dong-Gyun (Biotechnology Research Division, NFRDI)
An, Cheul Min (Biotechnology Research Division, NFRDI)
Lee, Hae Won (External Research Cooperation Division, NFRDI)
Park, Jung Youn (Biotechnology Research Division, NFRDI)
Publication Information
Journal of Life Science / v.25, no.11, 2015 , pp. 1204-1213 More about this Journal
Abstract
A comprehensive analysis of the population structure of the sandfish (Arctoscopus japonicas), the most abundant fishery resource in the East Sea of Korea, has not been carried out, despite its importance in Korea. The present study examined the genetic diversity and differences between five populations (two Japanese and three Korean populations) of A. japonicas captured in the East Sea using both the 401 bp sequence of mitochondrial DNA (mtDNA, cytochrome b) and five microsatellite DNA (msDNA) markers. The results of the analysis using the Cyt b sequence revealed 27 haplotypes. Based on msDNA variations, the estimated expected heterozygosity (HE) in each population ranged from 0.68 (Gampo, Korea) to 0.7765 (Erimo, Japan). Pairwise FST and AMOVA tests using both the Cyt b sequence and msDNA data pointed to significant differences between the Korean and Japanese populations (mtDNA; FST=0.2648, p<0.05, msDNA; FST=0.0814, p<0.05). These results were similar to the results of UPGMA, PCA, and structure analysis. In these analyses, the five populations were assigned to two groups (Korean populations and Japanese populations). These results shed light on the genetic diversity and relationships of A. japonicas and contribute to research on the evaluation, conservation, and utilization of Korean A. japonicas as genetic resources.
Keywords
Arctoscopus japonicas; genetic relationship; microsatellite; mitochondrial DNA; sandfish;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 An, H. C., Lee, K. H., Lee, S. I., Park, H. H., Bae, B. S., Yang, J. H. and Kim, J. B. 2011. Behaviour habitats of sailfin sandfish, Arctoscopus japonicas approaching toward the eastern coastal waters of Korea in the spawning season. Jour. Fish. Mar. Sci. Edu. 23, 35-42.
2 Avise, J. C. 1994. Molecular markers, Natural History and Evolution. Chapman and Hall, New York.
3 Beacham, T. D., Lapointe, M., Candy, J. R., Miller, K. M. and Withler, R. E. 2004. DNA in action: rapid application of DNA variation to sockeye salmon fisheries management. Conserv. Gen. 5, 411-416.   DOI
4 Brown, W. M., George, M. Jr. and Wilson, A. C. 1979. Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. USA. 76, 1967-1971.   DOI
5 Carr, S. M. and Marshall, H. D. 1991. Detection of intraspecific DNA sequence variation in the mitochondrial cytochrome b gene of Atlantic cod (Gadus morhua) by the polymerase chain reaction. Can. J. Fish. Aquat. Sci. 48, 48-52.   DOI
6 DeWoody, J. A. and Avise, J. C. 2000. Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J. Fish. Biol. 56, 461-473.   DOI
7 Evanno, G., Reguaut, S. and Goudet, J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611-2620.   DOI
8 Excoffier, L., Laval, G. and Schneider, S. 2005. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol. Bioinform. 1, 47-50.
9 Excoffier, L., Smouse, P. E. and Quattro, J. M. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479-491.
10 Goudet, J. 1995. FSTAT (version 1.2): a computer program to calculate F-statistics. J. Hered. 86, 485-486.
11 Hillis, D. M., Mabel, B. K. and Moritz, C. 1996. Application of molecular systematic: the state of the field and a look to the future, pp. 515-543. In: Molecular Systematics, 2nd edn. (eds. Hillis, D., Moritz, C., Mable, B. K.), Sinauer Associates, Massachusetts.
12 Jarne, P. and Lagoda, P. J. G. 1996. Microsatellites, from molecules to populations and back. Trends. Ecol. Evol. 11, 424-429.   DOI
13 Kobayashi, T. and Kaga, Y. 1981. Population of sandfish, Arctoscopus japonicas (Steindachner), in the seas around Hokkaido estimated from the variations of meristic characters (in Japanese). Bull. Hokkaido. Reg. Fish. Res. Lab. 46, 69-83.
14 Kim, I. S., Choi, Y., Lee, C. Y., Lee, Y. J., Kim, B. J. and Kim, J. H. 2005. Illustrated book of Korean fishes. pp. 1-615. Kyohak Press, Seoul.
15 Kim, J. Y., Yoon, M. G., Moon, C. H., Kang, C. K., Choi, K. H. and Lee, C. I. 2013. Morphological and genetic stock identification of Todarodes pacificus in Korean waters. J. Kor. Soc. Oceanogr. 18, 131-141.
16 Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120.   DOI
17 Langella, O. 2002. POPULATIONS 1.2.29. Population genetic software (individuals or populations distances, phylogenetic trees), http://bioinformatics.org/-tryphon/populations.
18 Lansman, R. A., Shade, R. O., Shapira, J. F. and Avise, J. C. 1981. The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. ΙΙΙ. Techniques and potential applications. J. Mol. Evol. 17, 214-226.   DOI
19 Lee, S. I., Yang, J. H., Yoon, S. C., Chun, Y. Y., Kim, J. B., Cha, H. K. and Choi, Y. M. 2009. Biomass estimation of sailfin sandfish, Arctoscopus japonicas, in Korean waters. Kor. J. Fish. Aquat. Sci. 42, 487-493.
20 Liu, Z. 2011. Genomic variations and marker technologies for genome-based selection. In: Liu, Z. (ed.), Next Generation Sequencing and Whole Genome Selection in Aquaculture. WileyBlackwell, Oxford, U.K.
21 Liu, Z. J. and Cordes, J. F. 2004. DNA marker technologies and their applications in aquaculture genetics. Aquaculture 238, 1-37.   DOI
22 Okiyama, M. 1970. Studies on the population biology of the sandfish, Arctoscopus japonicas (Steindachner). ΙΙ. Population analysis (preliminary report) (in Japanese). Bull. Jpn. Sea. Reg. Fish. Res. Lab. 22, 59-69.
23 Nei, M. 1972. Genetic distance between populations. Am. Nat. 106, 283-292.   DOI
24 NFRDI (National Fisheries Research and Development Institute). 2004. Commercial fishes of the coastal and offshore waters in Korea. pp. 1-333. 2nd ed Hangul Press, Busan.
25 Ochiai, A. and Tanaka, M. 1986. Ichthyology, vol 2, new edn (in Japanese). Koseisha-Koseikaku, Tokyo.
26 Okiyama, M. 1990. Contrast in reproductive style between two species of sandfishes (family Trichodontidae). Fish. Bull. 88, 543-549.
27 Park, C. J., Nam, W. S., Lee, J. H., Noh, J. K., Kim, H. C., Park, J. W., Hwang, I. J. and Kim, S. Y. 2013. Analysis of genetic divergence according to each mitochondrial DNA region of Haliotis discus hannai. Kor. J. Malacol. 29, 335-341.   DOI
28 Park, J. Y., Lee, H. J., Kim, W. J., Lee, J. H. and Min, K. S. 2000. Mitochondrial cytochrome b sequence variation in Korean salmonids. J. Fish. Biol. 56, 1145-1154.   DOI
29 Park, J. Y., Lee, S. J., Lee, H. W., Lee, Y. G., Jung, S. J. and Kang, Y. J. 2006. Polymerase chain reaction primers for polymorphic microsatellite loci from the Korean sandfish, Arctoscopus japonicas. Mol. Ecol. Notes 6, 674-676.   DOI
30 Peakall, R. and Smouse, P. E. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288-295.   DOI
31 Sekino, M., Saitoh, K., Yamada, T., Kumagai, A., Hara, M. and Yamashita, Y. 2003. Microsatellite-based pedigree tracing in a Japanese flounder Paralichthys oliaceus hatchery strain: implications for hatchery management related to stock enhancement program. Aquaculture 221, 255-263.   DOI
32 Perez-Enriquez, R., Takagi, M. and Taniguchi, N. 1999. Genetic variability and pedigree tracting of a hatchery-reared stock of red sea bream (Pagrus major) used for stock enhancement, based on microsatellite DNA markers. Aquaculture 173, 413-423.   DOI
33 Pritchard, J. K., Stephens, M. and Donnelly, P. 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945-959.
34 Rousset, F. 2008. GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103-106.   DOI
35 Shirai, S. M., Kuranaga, R., Sugiyama, H. and Higuchi, M. 2006. Population structure of the sailfin sandfish, Arctoscopus japonicas (Trichodontidae), in the Sea of Japan. Ichthyol. Res. 53, 357-368.   DOI
36 Sneath, P. H. A. and Sokal, R. R. 1973. Numerical taxonomy: The principles and practice of numerical classification. W. H. Freeman, San Francisco.
37 Tamura, K. and Nei, M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512-526.
38 Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011. MEGA5: Molecular evolurionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731-2739.   DOI
39 Ward, R. D., Zemlak, T. S., Innes, B. H., Last, R. R. and Hebert, P. D. H. 2005. DNA barcoding Australia′s fish species. Philos. Trans. R. Soc. Biol. Sci. 360, 1847-1857.   DOI
40 Tautz, D. 1989. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucl. Acids. Res. 17, 6463-6471.   DOI
41 Weir, B. S. and Cockerham, C. C. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358-1370.   DOI
42 Yang, J. H., Lee, S. I., Park, K. Y., Yoon, S. C., Kim, J. B., Chun, Y. Y., Kim, S. W. and Lee, J. B. 2012. Migration and distribution changes of the Sandfish, Arctoscopus japonicas in the East Sea. J. Kor. Soc. Fish. Tech. 48, 401-141.   DOI
43 Zardoya, R. and Doadri, I. 1999. Molecular evidence on the evolutionary and biogeographical patterns of European cyprinids. J. Mol. Evol. 49, 227-237.   DOI