Browse > Article
http://dx.doi.org/10.5352/JLS.2014.24.3.290

Anxiolytic Effects of Quercetin: Involvement of GABAergic System  

Jung, Ji Wook (Department of Herbal Medicinal Pharmacology, College of Herbal Bio-industry, Daegu Haany University)
Lee, Seungheon (Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University)
Publication Information
Journal of Life Science / v.24, no.3, 2014 , pp. 290-296 More about this Journal
Abstract
The present experiment investigated putative anxiolytic-like effects of quercetin using an elevated plus-maze (EPM) and hole-board apparatus test in mice. Quercetin is a flavonoid widely distributed in nature. Quercetin (1.25, 2.5, 5, or 10 mg/kg) was orally administered to ICR mice 1 h before a behavioral evaluation in the EPM. Control mice were treated with an equal volume of vehicle, and positive control mice were treated with buspirone (2 mg/kg, i.p.). The mice administered quercetin (5 mg/kg) spent a significantly longer percentage of time in the open arms of the EPM and their percentage of entries into the open arms was significantly increased compared to the vehicle-treated controls (p<0.05). The anxiolytic-like activities of quercetin were antagonized by trans-4-aminocrotonic acid (a $GABA_{A-{\rho}}$ agonist, 20 mg/kg) but not by flumazenil (a $GABA_A$ antagonist, 10 mg/kg) or WAY-100635 (a $5-HT_{1A}$ antagonist, 0.3 mg/kg). Moreover, there were no changes in the locomotor activity or myorelaxant effects in any group compared with the vehicle-treated controls. In the hole-board apparatus test, the number of head-dips increased significantly in the single treatment with quercetin (5 mg/kg) group compared to the vehicle-treated controls (p<0.05). These findings suggest that quercetin can promote anxiolytic-like activity, mediated by the GABAergic nervous system, in mice.
Keywords
Anxiety; $GABA_{A-{\rho}}$; mice; quercetin; trans-4-aminocrotonic acid;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Vaidya, A. H., Rosenthal, D. I., Lang, W., Crooke, J. J., Benjamin, D., Ilyin, S. E. and Reitz, A. B. 2005. Oral buspirone causes a shift in the dose-response curve between the elevated-plus maze and Vogel conflict tests in Long-Evans rats: relation of brain levels of buspirone and 1-PP to anxiolytic action. Methods Find Exp Clin Pharmacol 27, 245-255.   DOI   ScienceOn
2 Scholze, P., Ebert, V. and Sieghart, W. 1996. Affinity of various ligands for GABAA receptors containing alpha 4 beta 3 gamma 2, alpha 4 gamma 2, or alpha 1 beta 3 gamma 2 subunits. Eur J Pharmacol 304, 155-162.   DOI   ScienceOn
3 Shekhar, A. 1993. GABA receptors in the region of the dorsomedial hypothalamus of rats regulate anxiety in the elevated plus-maze test. I. Behavioral measures. Brain Res 627, 9-16.   DOI   ScienceOn
4 Takeda, H., Tsuji, M. and Matsumiya, T. 1998. Changes in head-dipping behavior in the hole-board test reflect the anxiogenic and/or anxiolytic state in mice. Eur J Pharmacol 350, 21-29.   DOI   ScienceOn
5 Toumi, M. L., Merzoug, S., Baudin, B. and Tahraoui, A. 2013. Quercetin alleviates predator stress-induced anxiety-like and brain oxidative signs in pregnant rats and immune count disturbance in their offspring. Pharmacol Biochem Behav 107, 1-10.   DOI   ScienceOn
6 Wittchen, H. U. and Hoyer, J. 2001. Generalized anxiety disorder: nature and course. J Clin Psychiatry 62 Suppl 11, 15-19; discussion 20-11.
7 Zomkowski, A. D., Hammes, L., Lin, J., Calixto, J. B., Santos, A. R. and Rodrigues, A. L. 2002. Agmatine produces antidepressant- like effects in two models of depression in mice. Neuroreport 13, 387-391.   DOI   ScienceOn
8 Li, Y. F., Gong, Z. H., Cao, J. B., Wang, H. L., Luo, Z. P. and Li, J. 2003. Antidepressant-like effect of agmatine and its possible mechanism. Eur J Pharmacol 469, 81-88.   DOI   ScienceOn
9 Lister, R. G. 1987. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology (Berl) 92, 180-185.
10 Lydiard, R. B. 2003. The role of GABA in anxiety disorders. J Clin Psychiatry 64 Suppl 3, 21-27.
11 Olsen, R. W. and Sieghart, W. 2008. International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev 60, 243-260.   DOI   ScienceOn
12 Pellow, S. and File, S. E. 1986. Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plusmaze: a novel test of anxiety in the rat. Pharmacol Biochem Behav 24, 525-529.   DOI   ScienceOn
13 Korte, S. M. and De Boer, S. F. 2003. A robust animal model of state anxiety: fear-potentiated behaviour in the elevated plus-maze. Eur J Pharmacol 463, 163-175.   DOI   ScienceOn
14 Korpi, E. R., Grunder, G. and Luddens, H. 2002. Drug interactions at GABA(A) receptors. Prog Neurobiol 67, 113-159.   DOI   ScienceOn
15 Ressler, K. J. and Nemeroff, C. B. 2001. Role of norepinephrine in the pathophysiology of neuropsychiatric disorders. CNS Spectr 6, 663-666,670.   DOI
16 Sadock, B. J., Kaplan, H. I. and Sadock, V. A. 2007. Kaplan and Sadock's Synopsis of Psychiatry, pp. 1470, 10th, Lippincott Williams & Wilkins. Philadelphia.
17 Sandford, J. J., Argyropoulos, S. V. and Nutt, D. J. 2000. The psychobiology of anxiolytic drugs. Part 1: Basic neurobiology. Pharmacol Ther 88, 197-212.   DOI   ScienceOn
18 Bennet, D. and Kim, S. 2013. Impedance-based cell culture platform to assess light-induced stress changes with antagonist drugs using retinal cells. Anal Chem 85, 4902-4911.   DOI   ScienceOn
19 Bhutada, P., Mundhada, Y., Bansod, K., Ubgade, A., Quazi, M., Umathe, S. and Mundhada, D. 2010. Reversal by quercetin of corticotrophin releasing factor induced anxiety- and depression-like effect in mice. Prog Neuropsy chopharmacol Biol Psychiatry 34, 955-960.   DOI   ScienceOn
20 Bonetti, E. P., Pieri, L., Cumin, R., Schaffner, R., Pieri, M., Gamzu, E. R., Muller, R. K. and Haefely, W. 1982. Benzodiazepine antagonist Ro 15-1788: neurological and behavioral effects. Psychopharmacology (Berl) 78, 8-18.   DOI
21 Chebib, M. 2004. GABAC receptor ion channels. Clin Exp Pharmacol Physiol 31, 800-804.   DOI   ScienceOn
22 Chirumbolo, S. 2012. Quercetin in Cancer Prevention and Therapy. Integr Cancer Ther 12, 97-102.
23 Association, A. P. 1994. Diagnostic and Statistical Manual of Mental Disorders, pp. 393-444, 4th eds., American Psychiatric Association. Washington, D.C. USA.
24 Dawson, G. R. and Tricklebank, M. D. 1995. Use of the elevated plus maze in the search for novel anxiolytic agents. Trends Pharmacol Sci 16, 33-36.   DOI   ScienceOn
25 Eckeli, A. L., Dach, F. and Rodrigues, A. L. 2000. Acute treatments with GMP produce antidepressant-like effects in mice. Neuroreport 11, 1839-1843.   DOI   ScienceOn
26 Fabene, P. F., Mariotti, R., Navarro Mora, G., Chakir, A. and Zancanaro, C. 2008. Forced mild physical training-induced effects on cognitive and locomotory behavior in old mice. J Nutr Health Aging 12, 388-390.   DOI
27 Flores-Gracia, C., Nuche-Bricaire, A., Crespo-Ramirez, M., Miledi, R., Fuxe, K. and Perez de la Mora, M. 2010. GABA(A) rho receptor mechanisms in the rat amygdala and its role in the modulation of fear and anxiety. Psychopharmacology (Berl) 212, 475-484.   DOI
28 Moreira, F. A., Aguiar, D. C. and Guimaraes, F. S. 2006. Anxiolytic-like effect of cannabidiol in the rat Vogel conflict test. Prog Neuropsychopharmacol Biol Psychiatry 30, 1466-1471.   DOI   ScienceOn
29 Bourin, M., Fiocco, A. J. and Clenet, F. 2001. How valuable are animal models in defining antidepressant activity? Human Psychopharmacology 16, 9-21.   DOI   ScienceOn