Browse > Article
http://dx.doi.org/10.5352/JLS.2014.24.3.227

Effect of p-Coumaric Acid, Benzoic Acid, and Salicylic Acid on the Activity of Glutathione Reductase and Catalase in in vitro Grown Tobacco Plants  

Kim, Sang A (Department of Biology, Keimyung University)
Roh, Kwang Soo (Department of Biology, Keimyung University)
Publication Information
Journal of Life Science / v.24, no.3, 2014 , pp. 227-233 More about this Journal
Abstract
Effects of p-coumaric acid (p-CA), benzoic acid (BA), and salicylic acid (SA) on the activities of glutathione reductase and catalase were studied in in vitro grown tobacco plants. After culturing the tobacco plants in MS medium containing $10^{-5}$ mM of p-CA, BA, and SA, the increase in the activities of two enzymes, glutathione reductase and catalase, were compared from day 20 to day 50 day, with an interval of 10 days. The growth of the tobacco plants treated with p-CA, BA, and SA was the highest on day 50. Analysis of the effect of the three substances on the activity of glutathione reductase showed that BA and p-CA decreased the activity of the enzyme compared with a control, and SA increased the activity of the enzyme. All of them showed the highest activity on day 40. SA increased the activity of catalase, but BA and p-CA reduced the activity of this enzyme. In all the experimental groups, the activity was the highest on day 40. In conclusion, p-CA and BA appear to promote the growth of tobacco plants. The growth was the best on day 50, but the activity of the antioxidative enzyme was inhibited. On the contrary, SA seemed to inhibit the growth of the tobacco plants but to promote the activity of glutathione reductase and catalase. The growth of the plants treated with SA was best on day 40.
Keywords
Benzoic acid; catalase; glutathione reductase; p-coumaric acid; salicylic acid;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Smiri, M., Chaoui, A., Rouhier, N. and Gelhaye, E. 2010. Redox regulation of glutathione reductase/iso-glutaredoxin system in germinating pea seed exposed to cadmium. Plant Sci 179, 423-436.   DOI   ScienceOn
2 Wang, D., Karolina, P. M., Angela, H. C. and Dong, X. 2007. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17, 1784-1790.   DOI   ScienceOn
3 Zang, L. Y., Cosma, G., Gardner, H., Shi, X., Castranova, V. and Vallyathan, V. 2000. Effect of antioxidant protection by p-coumaric acid on low-density lipoprotein cholesterol oxidation. Am J Physiol Cell Physiol 279, 954-960.
4 Zhao, F. Y., Wang, X. Y., Zhao, Y. X. and Zhang, H. 2006. Transferring the Suaeda salsa glutathione S-transferase and catalase genes enhances low temperature stress resistance in transgenic rice seedlings. J Plant Physiol Mol Biol 32, 231-238.
5 Shakirova, F. M., Sakhabutdinova, A. R., Bezrukova, M. V., Fatkhutdinova, R. A. and Fatkhutdinova, D. R. 2003. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Science 164, 317-322.   DOI   ScienceOn
6 Shin, D. H., Yu, S. R. and Choi, K. S. 1995. Effect of salicylic acid on anthocyanin synthesis in cell suspension cultures of Vitis vinifera L. Korean J Plant Tissue Culture 22, 59-64.   과학기술학회마을
7 Srivastava, M. K. and Dwivedi, U. N. 1998. Salicylic acid modulates glutathione metabolism in pea seedlings. J Plant Physiol 153, 409-414.   DOI   ScienceOn
8 Strobel, N. E. and Kuc, A. 1995. Chemical and biological inducers of systemic acquired resistance to pathogens protect cucumber and tobacco from damage caused by paraquat and cupric chloride. Phytopathol 85, 1306-1310.   DOI
9 Summermatter, K., Sticher, L. and Metraux, J. P. 1995. Systemic response in Arabidopsis thaliana infected and challenged with Pseudomonas syringae pv syringe. Plant Physiol 108, 1379-1385.   DOI
10 Tanaka, T., Naganuma, A. and Imura, N. 1990. Role of ${\gamma}$-glutamyl-transpeptidase in renal uptake and toxicity in inorganic mercury in mice. Toxicology 60, 187-198.   DOI   ScienceOn
11 Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15, 473-497.   DOI
12 Lee, K. R. and Roh, K. S. 2003. Influence of cadmium on rubisco activation in Canavalia ensiformis L. leaves. Biotech Bioprocess Eng 8, 94-100.   과학기술학회마을   DOI
13 Leon, J., Yalpani, N., Raskin, I. and Lawton, M. A. 1993. Induction of benzoic acid 2-hydroxylase in virus-inoculated tobacco. Plant Physiol 103, 323-328.   DOI
14 Meister, A. 1983. Selective modification of glutathione metabolism. Science 220, 472-477.   DOI
15 Inze, D. and Van Montagu, M. 1995. Oxidative stress in plants. Curr Opin Biotech 6, 153-158.   DOI   ScienceOn
16 Gutierrez-Coronado, M. A., Trejo-Lopez, C. and Larque-Saavedra, A. 1998. Effects of salicylic acid on the growth of roots and shoots in soybean. Plant Physiol Biochem 36, 563-565.   DOI   ScienceOn
17 Ganesan, V. and Thomas, G. 2001. Salicylic acid response in rice: influence of Salicylic acid on H2O2 accumulation and oxidative stress. Plant Science 160, 1095-1106.   DOI   ScienceOn
18 Hudson, E. A., Dinh, P. A., Kokubun, T., Simmonds, M. S. and Gescher, A. 2000. Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiol Biomarkers Prev 9, 1163-1170.
19 Janda, T., Szalai, G., Tari, I. and Pa'ldi, E. 1999. Hydroponic treatment with salicylic acid decrease the effects of chilling injury in maize (Zea mays L.) plants. Planta 208, 175-180.   DOI   ScienceOn
20 Lee, H. I., Leon, J. and Raskin, I. 1995. Biosynthesis and metabolism of salicylic acid. Proc Natl Acad Sci USA 92, 4076-4079.   DOI   ScienceOn
21 Byun, H. J. and Choi, S. J. 2003. Activation of disease resistance related enzymes by treatment of hydrogen peroxide and benzoic acid in cucumber (Cucumis sativus). J Korean Soc Hort Sci 44, 287-291.
22 An, S. M., Lee, S. I., Choi, S. W., Moon, S. W. and Boo, Y. C. 2008. p-Coumaric acid, a constituent of Sasa quelpaertensis Nakai, inhibits cellular melanogenesis stimulated by a-melanocyte stimulating hormone. J Dermatol 159, 292-299.   DOI   ScienceOn
23 Asada, K. 1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Ann Rev Plant Physiol Plant Mol Biol 50, 601-639.   DOI   ScienceOn
24 Rennenberg, H. 1982. Glutathione metabolism and possible biological roles in higher plants. Phytochemistry 21, 2771-1781.
25 Murphy, A. M., Chivasa, S., Singh, D. P. and Carr, J. P. 1999. Salicylic acid-induced resistance to viruses and other pathogens: A parting of the ways? Trends Plant Sci 4, 155-160.   DOI   ScienceOn
26 Park, S. K. and Park, J. C. 1994. Antimicrobial activity of extracts and coumaric acid isolated from Artemisia princeps var. orientalis. Korean J Biotech Bioeng 5, 506-511.   과학기술학회마을
27 Pasqualini, S., Batini, P., Ederli, L., Porceddu, A., Piccioni, C., De Marchis, F. and Antonielli, M. 2001. Effects of short-term ozone fumigation on tobacco plants: response of the scavenging system and expression of the glutathione reductase. Plant Cell Environ 24, 245-252.   DOI
28 Ribnicky, D. M., Shulaev, V. and Raskin, I. 1998. Intermediates of salicylic acid biosynthesis in tobacco. Plant Physiol 118, 565-572.   DOI   ScienceOn
29 Sanchez-Casas, P. and Klessig, D. F. 1994. A salicylic acidbinding activity and a salicylic acid-inhibitable catalase activity are present in a variety of plant species. Plant Physiol 106, 1675-1679.   DOI
30 Guan, L. and Scandalios, J. G. 1995. Developmentally related responses of maize catalase genes to salicylic acid. Proc Natl Acad Sci USA 92, 5930-5934.   DOI   ScienceOn
31 Foyer, C. H. and Halliwell, B. 1976. the presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta 133, 21-25.   DOI   ScienceOn
32 Foyer, C. H., Lopez-Delgado, H., Dat, J. F. and Scott, I. M. 1997. Hydrogen peroxide and glutathione associated metabolism of acclimatory stress tolerance and signalling. Physiol Plant 100, 241-254.   DOI   ScienceOn
33 Durner, J. and Klessig, D. F. 1995. Inhibition of ascorbate peroxidase by salicylic acid and 2,6 dichloroisonicotinic acid, two inducers of plant defence responses. Proc Natl Acad Sci USA 92, 11312-11316.   DOI   ScienceOn
34 Bi, Y. M., Kenton, P., Murr, L., Darby, R. and Draper, J. 1995. $H_2O_2$ does not function downstream of salicylic acid in the induction of PR protein expression. Plant J 8, 235-241.   DOI   ScienceOn
35 Chance, B., Sies, H. and Boveris, A. 1979. Hydroperoxide metabolism in mammalian organs. Physiol Rev 59, 527-605.   DOI
36 Creissen, G. P., Edwards, E. A. and Mullineaux, P. M. 1994. Glutathione reductase G. Pscorbate peroxidase, In Foyer, C. H. and Mullineaux, P. M. (eds.), pp. 343-364, Cause of Photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, FL.
37 Durner, J., Shah, J. and Klessing, D. F. 1997. Salicylic acid and disease resistance in plants. Trends Plant Sci 2, 266-274.   DOI   ScienceOn
38 Durrant, W. E. and Dong, X. 2004. Systemic Acquired Resistance. Ann Rev Phytopathol 42, 185-209.   DOI   ScienceOn
39 Ferguson, L. R., Zhu, S. T. and Harris, P. J. 2005. Antioxidant and antigenotoxic effect of plant cell wall hydroxycinnamic acids in cultured HT-29 cell. Mol Nutr Food Res 49, 585-593.   DOI   ScienceOn
40 Aebi, H. 1984. Catalase in vitro. Methods Enzymol 105, 121-126.   DOI   ScienceOn
41 Alscher, R. G. 1989. Biosynthesis and antioxidant function of glutathione in plants. Physiol Plant 77, 457-464.   DOI
42 Goodman, R. N. and Novacky, A. J. 1994. The hypersensitive reaction in plants to pathogens. APS Press., St. Paul MN USA.