Browse > Article
http://dx.doi.org/10.5352/JLS.2014.24.1.81

Production of Indigoid Pigments by Persolvent Fermentation with Pseudomonas putida BCNU 106  

Choi, Hye Jung (Department of Biology and Interdisciplinary Program for Biotechnology, Changwon National University)
Kwon, Gi-Seok (School of Bioresource Science, Andong National University)
Joo, Woo Hong (Department of Biology and Interdisciplinary Program for Biotechnology, Changwon National University)
Publication Information
Journal of Life Science / v.24, no.1, 2014 , pp. 81-85 More about this Journal
Abstract
Pseudomonas sp. BCNU 106 isolated from industrial wastewater was able to produce indigo from indole by utilizing various organic solvents. BCNU 106 produced indigo effectively when grown in the presence of a large volume of p-xylene, propylbenzene, and mesitylene and a high level of indole. The present study demonstrated that the maximal yield was achieved with 20% (v/w) p-xylene and 4 g/l indole. Under these conditions, the indigo yield and the transformation efficiency of indole were 315.5 mg/l and 97%, respectively. The results suggest that Pseudomonas sp. BCNU 106 might be a potential candidate for industrially important indigo production.
Keywords
Biotransformation; indigoid pigments; microbial biosynthesis; Pseudomonas sp.;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Choi, H. J., Seo, J. Y., Hwang, S. M., Lee, Y. I., Jeong, Y. K., Moon, J. Y. and Joo, W. H. 2013. Isolation and characterization of BTEX tolerant and degrading Pseudomonas putida BCNU 106. Biotechnol Bioprocess Eng 18, 1000-1007.   DOI
2 Angelini, L. G., Tozzi, S. and Nassi o Di Nasso, N. 2004. Environmental factors affecting productivity, indican content, and indigo yield in Polygonum tinctorium Ait., a subtropical crop grown under temperate conditions. J Agric Food Chem 52, 7541-7547.   DOI   ScienceOn
3 Bhrigu, B., Pathak, D., Siddiqui, N., Alam, M. S. and Ahsan, W. 2010. Search for biological active isatins: a short review. Int J Pharm Sci Drug Res 2, 229-235.
4 Bhushan, B., Samanta, S. K. and Jain, R. K. 2000. Indigo production by naphthalene degrading bacteria. Lett Appl Microbiol 31, 5-9.   DOI
5 Cooksey, C. J. 2007. Indigo: an annotated bibliography. Biotechnic Histochem 82, 105-125.   DOI   ScienceOn
6 Doukyu, N. and Aono, R. 1997. Biodegradation of indole at high concentration by persolvent fermentation with Pseudomonas sp. ST-200. Extremophiles 1, 100-105.   DOI
7 Doukyu, N., Toyoda, K. and Aono, R. 2003. Indigo production by Escherichia coli carrying the phenol hydroxylase gene from Acinetobacter sp. strain ST-550 in a water organic solvent two-phase system. Appl Microbiol Biotechnol 60, 720-725.   DOI
8 Ensley, B. D., Ratzkin, B. J., Osslund, T. D., Simon, M. J., Wackett, L. P. and Gibson, D. T. 1983. Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science 222, 167-169.   DOI
9 Murdock, D., Ensley, B. D., Serdar, C. and Thalen, M. 1993. Construction of metabolic operons catalyzing the de novo biosynthesis of indigo in Escherichia coli. Biotechnol 11, 381-386.   DOI
10 Farias-Silva E., Cola, M., Calvo, T. R., Barbastefano, V., Ferreira, A. L., De Paula Michelatto, D., Alves de Almeida, A. C., Hiruma-Lima, C. A., Vilegas, W. and Brito, A. R. 2007. Antioxidant activity of indigo and its preventive effect against ethanol-induced DNA damage in rat gastric mucosa. Planta Med 73, 1241-1246.   DOI   ScienceOn
11 Gillam, E. M. J., Notley, L. M., Cai, H., De Voss, J. J., Guengerich, F. P. 2000. Oxidation of indole by cytochrome P450 enzymes. Biochemistry 39, 13817-13824.   DOI   ScienceOn
12 Madsen, E. L. and Bollag, J. M. 1988. Pathway of indole metabolism by a denitrifying microbial community. Arch Microbiol 151, 71-76.   DOI
13 Gilbert, K. G., Hill, D. J., Crespo, C., Mas, A., Lewis, M., Rudolph, B. and Cooke, D. T. 2000. Qualitative analysis of indigo precursors from woad by HPLC and HPLC-MS. Phytochem Anal 11, 18-20.   DOI
14 Zhang, X., Qu, Y., Ma, Q., Zhoi, H., Li, X., Kong, C. and Zhou, J. 2013. Cloning and expression of naphthalene dioxygenase genes form Comamonas sp. MQ for indigoids production. Process Biochem 48, 581-587.   DOI
15 Puchalska, M., Polec-Pawlak, K., Zadrozna, I., Hryszko, H. and Jarosz, M. 2004. Identification of indigoid dyes in natural organic pigments used in historical art objects by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry. J Mass spectrom 39, 1441-1449.   DOI   ScienceOn
16 Qu, Y., Pi, W., Ma, F., Zhou, J. and Zhang, X. 2010. Influence and optimization of growth substrates in indigo formation by a novel isolate Acinetobacter sp. PP-22. Bioresour Technol 101, 4527-4532.   DOI
17 Schmid, A., Dordick, J. S., Hauer, B., Kiener, A., Wubbolts, M. and Witholt, B. 2001. Industrial biocatalysis today and tomorrow. Nature 409, 258-268.   DOI   ScienceOn
18 Qu, Y., Ma, Q., Zhang, X., Zhou, H., Li, X. and Zhou, J. 2012. Optimization of indigo production by a newly isolated Pseudomonas sp. QM. J Basic Microbiol 52, 687-694.   DOI
19 Eaton, R. W. and Chapman, P. J. 1995. Formation of indigo and related compounds from indolecarboxylic acids by aromatic acid-degrading bacteria: chromogenic reactions for cloning dioxygenases that act on aromatic acids. J Bacteriol 177, 6983-6988.