Browse > Article
http://dx.doi.org/10.5352/JLS.2014.24.10.1046

Enhancement of β-1,3-Glucanase Activity by Sequential δ-Sequence Mediated Integration in Saccharomyces cerevisiae  

Kim, Min-Jung (Department of Biomaterial Control, Dong-Eui University)
Kim, Yeon-Hee (Department of Biomaterial Control, Dong-Eui University)
Publication Information
Journal of Life Science / v.24, no.10, 2014 , pp. 1046-1054 More about this Journal
Abstract
Beta-1,3-glucanase is widely used in various biotechnological and industrial processes, with over-production required to enable versatile utilization. We examined the overexpression of ${\beta}$-1,3-glucanase (EXGA) from Aspergillus oryzae using ${\delta}$-sequence-mediated integration. We constructed $pRS{\delta}$-exgA and $pRS{\delta}K$-exgA plasmids for integration of the EXGA gene into various chromosomes of Saccharomyces cerevisiae. These plasmids contain the ADH1 promoter for constitutive expression, a signal sequence (exoinulinase signal sequence [INU1 s.s]) for secretory production, and a ${\delta}$-sequence for integration of ${\beta}$-1,3-glucanase. The $pRS{\delta}$-exgA plasmid was transformed into the S. cerevisiae $BY4742{\Delta}exg1$ strain, and ${\beta}$-1.3-glucanase was stably overexpressed and secreted. Another plasmid, $pRS{\delta}K$-exgA, was introduced into the S. cerevisiae $BY4742{\Delta}exg1$ (YKY082) strain, and overexpression of ${\beta}$-1,3-glucanase was examined by inducible integration under geneticin selection. The activity of ${\beta}$-1,3-glucanase increased in accordance with a rise in the geneticin concentration, with 0.8 mg/ml of geneticin suitable for overexpression of ${\beta}$-1,3-glucanase. Subsequently, $pRS{\delta}K$-exgA was repeatedly transformed for sequential ${\delta}$-integration. The activity of ${\beta}$-1,3-glucanase reached about 0.063 unit/ml/$OD_{600}$, 0.095 unit/ml/$OD_{600}$, 0.131 unit/ml/$OD_{600}$ and 0.165 unit/ml/$OD_{600}$ by the first, second, third, and fourth round of integration, respectively. According to the increase in the activity of ${\beta}$-1,3-glucanase by sequential ${\delta}$-integration, the copy number (integration rate) of the EXGA gene also increased in various chromosomes. These results suggest that recombinant ${\beta}$-1,3-glucanase activity can be sequentially increased by repeated ${\delta}$-sequence integration.
Keywords
${\delta}$-sequence; ${\beta}$-1,3-glucanase; sequential ${\delta}$-integration; Saccharomyces cerevisiae;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bara, M. T. F., Lima, A. L. and Ulhoa, C. J. 2003. Purification and characterization of an exo-${\beta}$-1,3-glucanase produced by Trichoderma asperellum. FEMS Microbiol Lett 219, 81-85.   DOI   ScienceOn
2 Dujon, B. 1996. The yeast genome project: what did we learn? Trends Genet 12, 263-270.   DOI   ScienceOn
3 Broach, J. R. 1983. Construction of high copy yeast vectors using 2-${\mu}m$ circle sequences. Methods Enzymol 101, 307-325.   DOI
4 Cho, K. M., Yoo, Y. J. and Kang, H. S. 1999. $\delta$-integration of endo: exo-glucanase and ${\beta}$-glucosidase genes into the yeast chromosomes for direct conversion of cellulose to ethanol. Enzyme Microb Technol 25, 23-30.   DOI   ScienceOn
5 Gietz, R. D. and Schiestl, R. H. 1995. Transforming yeast with DNA. Methods Mol Cell Biol 5, 225-269.
6 Gil, J. V., Manzanares, P., Genoves, S., Valles, S. and Gonzalez-Candelas, L. 2005. Over-production of the major exoglucanase of Saccharomyces cerevisiae leads to an increase in the aroma of wine. Int J Food Microbiol 103, 57-68.   DOI   ScienceOn
7 Guegen, Y., Chemardin, P., Janbon, G., Arnaud, A. and Galzy, P. 1996. A very efficient ${\beta}$-glucosidase catalyst for the hydrolysis of flavor precursors of wines and fruit juices. J Agric Food Chem 44, 2336-2340.   DOI   ScienceOn
8 Güldener, U., Heck, S., Fiedler, T., Beinhauer, J. and Hegemann, J. H. 1996. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24, 2519-2524.   DOI
9 Jacobs, E., Dewerchin, M. and Boecke, J. D. 1988. Retroviruslike vectors for S. cerevisiae: integration of foreign genes controlled by efficient promoters into yeast chromosomal DNA. Gene 67, 259-269.   DOI   ScienceOn
10 Kim, M. D., Rhee, S. K. and Seo, J. H. 2001. Enhanced production of anticoagulant hirudin in recombinant Saccharomyces cerevisiae by chromosomal $\delta$-integration. J Biotechnol 85, 41-48.   DOI   ScienceOn
11 Jiang, B., Ram, A. F., Sheraton, J., Klis, F. M. and Bussey, H. 1995. Regulation of cell wall beta-glucan assembly: PTC1 negatively affects PBS2 action in a pathway that includes modulation of EXG1 transcription. Mol Gen Genet 248, 260-269.   DOI   ScienceOn
12 Jijakli, M. H. and Lepoivre, P. 1998. Characterization of an exo-${\beta}$-1,3-glucanase produced by Pichia anomala strain K, antagonist of Botrytiscinerea on apples. Phytopathology 88, 335-343.   DOI   ScienceOn
13 Kim, H., Ahn, J. H., Gorlach, J. M., Caprari, C., Scott-Craig, J. S. and Walton, J. D. 2001. Mutational analysis of beta-glucanase genes from the plant-pathogenic fungus Cochliobolus carbonum. Mol Plant Microbe Interact 14, 1436-1443.   DOI   ScienceOn
14 Kim, M. J., Nam, S. W., Tamano, K., Machida, M., Kim, S. K. and Kim, Y. H. 2011. Optimization for Production of Exo-${\beta}$-1,3-glucanase (Laminarinase) from Aspergillus oryzae in Saccharomyces cerevisiae. KSBB J 26, 427-432.   DOI   ScienceOn
15 Kim, Y, H., Ishikawa, D., Ho, P. H., Sugiyama, M., Kaneko, Y. and Haraghima, S. 2006. Chromosome XII context is important for rDNA function in yeast. Nucleic Acids Res 34, 2914-2924.   DOI   ScienceOn
16 Lee, F. W. F. and Da Silva, N. A. 1997. Improved efficiency and stability of multiple cloned gene insertions at the $\delta$- sequences of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 48, 339-345.   DOI   ScienceOn
17 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for the determination of reducing sugar. Anal Chem 31, 426-428.   DOI
18 Lee, F. W. F. and Da Silva, N. A. 1997. Sequential $\delta$-Integration for the regulated insertion of cloned genes in Saccharomyces cerevisiae. Biotechnol Prog 13, 368-373.   DOI   ScienceOn
19 Murray, A. W. and Szostak, J. W. 1983. Pedigree analysis of plasmid segregation in yeast. Cell 34, 961-970.   DOI   ScienceOn
20 Lopes, T. S., Hakkaart, G. A. J., Koerts, B. L., Rau, H. A. and Planta, R. J. 1991. Mechanism of high-copy-number integration of pMIRY-type vectors into the ribosomal DNA of Saccharomyces cerevisiae. Gene 105, 83-90.   DOI   ScienceOn
21 Mochizuki, D., Miyahara, K., Hirata, D., Matsuzaki, H., Hatano, T., Fukui, S. and Miyakawa, T. 1994. Overexpression and secretion of cellulolytic enzymes by $\delta$-sequences mediated multicopy integration of heterologous DNA sequences into the chromosomes of Saccharomyces cerevisiae. J Ferment Bioeng 77, 468-473.   DOI   ScienceOn
22 Nieto, A., Prieto, J. A. and Sanz, P. 1999. Stable high-copynumber integration of Aspergillus oryzae a-amylase cDNA in an industrial baker''s yeast strain. Biotechnol Prog 15, 459-466.   DOI   ScienceOn
23 Parekh, R. N., Shaw, M. R. and Wittrup, K. D. 1996. An integrating vector for tunable, high copy, stable integration into the dispersed Ty $\delta$-sites of Saccharomyces cerevisiae. Biotechnol Prog 12, 16-21.   DOI   ScienceOn
24 Pitson, S. M., Seviour, R. J. and McDougall, B. M. 1993. Noncellulolytic fungal beta-glucanases: their physiology and regulation. Enzyme Microb Technol 15, 178-192.   DOI   ScienceOn
25 Sheehan, C. and Weiss, A. S. 1990. Yeast artificial chromosome: rapid extraction for high resolution analysis. Nucleic Acids Res 18, 2193.   DOI   ScienceOn
26 Romanos, M. A., Scorer, C. A. and Clare, J. J. 1992. Foreign gene expression in yeast: a review. Yeast 8, 423-488.   DOI   ScienceOn
27 Sakai, A., Shimizu, Y. and Hishimura, F. 1990. Integration of heterologous genes into the chromosome of Saccharomyces cerevisiae using a $\delta$-sequence of yeast retrotransposon Ty. Appl Microbiol Biotechnol 33, 302-306.   DOI
28 van de Rhee, M. D., Mendes, O., Werten, M. W., Huizing, H. J. and Mooibroek, H. 1996. Highly efficient homologous integration via tandem exo-beta-1,3-glucanase genes in the common mushroom, Agaricus bisporus. Curr Genet 30, 166-173.   DOI   ScienceOn
29 Shoseyov, O., Bravdo, A. B., Ikan, R. and Chet, I. 1990. Immobilized endo-${\beta}$-glucosidase enriches flavor of wine and passion fruit juice. J Agric Food Chem 27, 1973-1976.
30 Tamano, K., Satoh, Y., Ishii, T., Terabayashi, Y., Ohtaki, S., Sano, M., Takahashi, T., Koyama, Y., Mizutani, O., Abe, K. and Machida, M. 2007. The ${\beta}$-1,3-exoglucanase gene exgA (exg1) of Aspergillus oryzae is required to catabolize extracellular glucan, and is induced in growth on a solid surface. Biosci Biotechnol Biochem 71, 926-934.   DOI   ScienceOn
31 van Rensburg, P., van Zyl, W. H. and Pretorius, I. S. 1997. Over-expression of the Saccharomyces cerevisiae exo-${\beta}$- 1,3-glucanase gene together with the Bacillus subtilis endo-${\beta}$- 1,3-1,4-glucanase gene and the Butyrivibrio fibrisolvens endo- ${\beta}$-1,4-glucanase gene in yeast. J Biotechnol 55, 43-53.   DOI   ScienceOn
32 Burke, D., Dawson, D. and Stearns, T. 2000. Methods in yeast genetics, pp. 110-111, A Cold Spring Harbor Laboratory Course Manual. A Cold Spring Harbor Laboratory, Cold Spring Harbor. New York.
33 Vasserot, Y., Arnaud, A. and Galzy, P. 1995. Monoterpenyl glycosides in plants and their biotechnological transformation. Acta Biotechnol 15, 77-95.   DOI   ScienceOn
34 Vazquez de Aldana, C. R., Correa, J., San Segundo, P., Bueno, A., Nebreda, A. R., Mendez, E. and del Rey, F. 1991. Nucleotide sequence of the exo-1,3-beta-glucanase encoding gene, EXG1, of the yeast Saccharomyces cerevisiae. Gene 97, 173-182.   DOI   ScienceOn
35 Yamada, R., Tanaka, T., Ogino, C., Fukuda, H. and Kondo, A. 2010. Novel strategy for yeast construction using $\delta$-integration and cell fusion to efficiently produce ethanol from raw starch. Appl Microbiol Biotechnol 85, 1491-1498.   DOI