Browse > Article
http://dx.doi.org/10.5352/JLS.2013.23.9.1109

Induction of G1 Arrest by Methanol Extract of Lycopus lucidus in Human Lung Adenocarcinoma A549 Cells  

Park, Hyun-Jin (Blue-Bio Industry RIC, Dong-Eui University)
Jin, Soojung (Blue-Bio Industry RIC, Dong-Eui University)
Oh, You Na (Blue-Bio Industry RIC, Dong-Eui University)
Yun, Seung-Geun (Department of Life Science and Biotechnology, College of Natural Sciences, Dong-Eui University)
Lee, Ji-Young (Blue-Bio Industry RIC, Dong-Eui University)
Kwon, Hyun Ju (Blue-Bio Industry RIC, Dong-Eui University)
Kim, Byung Woo (Blue-Bio Industry RIC, Dong-Eui University)
Publication Information
Journal of Life Science / v.23, no.9, 2013 , pp. 1109-1117 More about this Journal
Abstract
Induction of G1 Arrest by Methanol Extract of Lycopus lucidus in Human Lung Adenocarcinoma A549 Cells Lycopus lucidus, a herbaceous perennial, is used as a traditional remedy in East Asia, including China and Korea. It has been reported that L. lucidus has anti-allergic effects, inhibitory effects on cholesterol acyltransferase in high glucose-induced vascular inflammation, and anti-proliferative effects in human breast cancer cells. However, the molecular mechanisms of the anti-cancer effects of L. lucidus have not yet been fully determined. In this study, we evaluated the anti-cancer effect and the mechanism of action of L. lucidus in human lung adenocarcinoma A549 cells using methanol extracts of L. lucidus (MELL). MELL treatment showed cytotoxic activity in a dose-dependent manner and induced G1 arrest in A549 cells. The induction of G1 arrest by MELL was associated with the up-regulation of phospho-CHK2 and the down-regulation of Cdc25A phosphatase. In addition, MELL treatment induced decreased expression of G1/S transition-related proteins, including CDK2, CDK4, CDK6, cyclin D1 and cyclin E. MELL also regulated the mRNA expression of CDK2 and cyclin E. On the other hand, the expression of p53 and the cyclin-dependent kinase inhibitor p21 was not induced by MELL. Collectively, these results suggest that MELL may exert an anti-cancer effect by cell cycle arrest at G1 phase through the ATM/CHK2/Cdc25A/CDK2 pathway in A549 cells.
Keywords
Anti-cancer effect; Cdc25A; CDK; G1 arrest; Lycopus lucidus;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Vogelstein, B., Lane, D. and Levine, A. J. 2000. Surfing the p53 network. Nature 408, 307-310.   DOI   ScienceOn
2 Woo, E. R. and Piao, M. S. 2004. Antioxidative constituents from Lycopus lucidus. Arch Pharmacal Res 27, 173-176.   DOI   ScienceOn
3 Wu, W., Fan, Y. H., Kemp, B. L., Walsh, G. and Mao, L. 1998. Overexpression of cdc25A and cdc25B is frequent in primary non-small cell lung cancer but is not associated with overexpression of c-myc. Cancer Res 58, 4082-4085.
4 Xu, X., Yamamoto, H., Liu, G., Ito, Y., Ngan, C. Y., Kondo, M., Nagano, H., Dono, K., Sekimoto, M. and Monden, M. 2008. CDC25A inhibition suppresses the growth and invasion of human hepatocellular carcinoma cells. Int J Mol Med 21, 145-152.
5 Xu, X., Yamamoto, H., Sakon, M., Yasui, M., Ngan, C. Y., Fukunaga, H., Morita, T., Ogawa, M., Nagano, H., Nakamori, S., Sekimoto, M., Matsuura, N. and Monden, M. 2003. Overexpression of CDC25A phosphatase is associated with hypergrowth activity and poor prognosis of human hepatocellular carcinomas. Clin Cancer Res 9, 1764-1772.
6 Yun, Y., Han, S., Park, E., Yim, D., Lee, S., Lee, C. K., Cho, K. and Kim, K. 2003. Immunomodulatory activity of betulinic acid by producing proinflammatory cytokines and activation of macrophages. Arch Pharmacal Res 26, 1087-1095.   DOI   ScienceOn
7 Zhang, W., Grasso, L., McClain, C. D., Gambel, A. M., Cha, Y., Travali, S., Deisseroth, A. B. and Mercer, W. E. 1995. p53-independent induction of WAF1/CIP1 in human leukemia cells is correlated with growth arrest accompanying monocyte/macrophage differentiation. Cancer Res 55, 668-674.
8 Zhou, B. B. and Elledge, S. J. 2000. The DNA damage response: putting checkpoints in perspective. Nature 408, 433-439.   DOI   ScienceOn
9 Kim, W. H., Kim, J. W., Jang, S. M., Song, K. H., Ham, S. W. and Choi, K. H. 2007. Naphthoquinone Analog-induced G1 arrest is mediated by cdc25A inhibition and p53-independent p21 induction in human hepatocarcinoma cells. Integr Biosci 11, 9-15.   DOI
10 Lee, Y. J., Kang, D. G., Kim, J. S. and Lee, H. S. 2008. Lycopus lucidus inhibits high glucose-induced vascular inflammation in human umbilical vein endothelial cells. Vascul Pharmacol 48, 38-46.   DOI   ScienceOn
11 Mailand, N., Falck, J., Lukas, C., Syljuasen, R. G., Welcker, M., Bartek, J. and Lukas, J. 2000. Rapid destruction of Cdc25A in response to DNA damage. Science 288, 1425-1429.   DOI
12 Nalca, A. and Rangnekar, V. M. 1998. The G1-phase growtharresting action of interleukin-1 is independent of p53 and p21/WAF1 function. J Biol Chem 273, 30517-30523.   DOI
13 Neergheen, V. S., Bahorun, T., Taylor, E. W., Jen, L. S. and Aruoma, O. I. 2010. Targeting specific cell signaling transduction pathways by dietary and medicinal phytochemicals in cancer chemoprevention. Toxicology 278, 229-241.   DOI   ScienceOn
14 Polewska, J., Skwarska, A., Augustin, E. and Konopa, J. 2013. DNA-damaging imidazoacridinone C-1311 induces autophagy followed by irreversible growth arrest and senescence in human lung cancer cells. J Pharmacol Exp Ther 346, 393-405.   DOI   ScienceOn
15 Nilsson, I. and Hoffmann, I. 2000. Cell cycle regulation by the Cdc25 phosphatase family. Prog Cell Cycle Res 4, 107-114.
16 O’Connor, P. M. 1997. Mammalian G1 and G2 phase checkpoints. Cancer Surv 29, 151-182.
17 Park, J. H. 2004. Medicinal plants of Korean, pp. 1171-1173, Shinil Books: Seoul, Korea.
18 Ryan, K. M., Phillips, A. C. and Vousden, K. H. 2001. Regulation and function of the p53 tumor suppressor protein. Curr Opin Cell Biol 13, 332-337.   DOI   ScienceOn
19 Shin, T. Y., Kim, S. H., Suk, K. H., Ha, J. H., Kim, I. K., Lee, M. G., Jun, C. D., Kim, S. Y., Lim, J. P., Eun, J. S., Shin, H. Y. and Kim, H. M. 2005. Anti-allergic effects of Lycopus lucidus on mast cell-mediated allergy model. Toxicol Appl Pharmacol 209, 255-262.   DOI   ScienceOn
20 Gasparotto, D., Maestro, R., Piccinin, S., Vukosavljevic, T., Barzan, L., Sulfaro, S. and Boiocchi, M. 1997. Overexpression of CDC25A and CDC25B in head and neck cancers. Cancer Res 57, 2366-2368.
21 Guo, W. Q., He, Z. Y. and Zhang, Q. 2013. The anti-tumour effect of ethanol extract of rhizoma atractylodis on lung cancer A549 cells. Biotechnology 23, 73-76.
22 Hartwell, L. H. and Kastan, M. B. 1994. Cell cycle control and cancer. Science 266, 1821-1828.   DOI
23 Hashimoto, O., Ueno, T., Kimura, R., Ohtsubo, M., Nakamura, T., Koga, H., Torimura, T., Uchida, S., Yamashita, K. and Sata, M. 2003. Inhibition of proteasome-dependent degradation of Wee1 in G2-arrested Hep3B cells by TGF beta1. Mol Carcinog 36, 171-182.   DOI   ScienceOn
24 Ito, Y., Yoshida, H., Uruno, T., Takamura, Y., Miya, A., Kuma, K. K. and Miyauchi, A. 2004. Expression of cdc25A and cdc25B phosphatase in breast carcinoma. Breast Cancer 11, 295-300.   DOI   ScienceOn
25 Bartek, J. and Lukas, J. 2001. Pathways governing G1/S transition and their response to DNA damage. FEBS Lett 490, 117-122.   DOI   ScienceOn
26 Bernardi, R., Liebermann, D. A. and Hoffman, B. 2000. Cdc25A stability is controlled by the ubiquitin-proteasome pathway during cell cycle progression and terminal differentiation. Oncogene 19, 2447-2454.   DOI
27 Hoeijmakers, J. H. 2001. Genome maintenance mechanisms for preventing cancer. Nature 411, 366-374.   DOI   ScienceOn
28 Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E. and Forman, D. 2011. Global cancer statistics. CA Cancer J Clin 61, 69-90.   DOI
29 Jin, P., Gu, Y. and Morgan, D. O. 1996. Role of inhibitory CDC2 phosphorylation in radiation-induced G2 arrest in human cells. J Cell Biol 134, 963-970.   DOI   ScienceOn
30 Kim, D. Y. and Ghil, S. H. 2009. Effect of Lycopus lucidus Trucz on cell growth of human breast cancer cells, MCF-7. J Exp Biomed Sci 15, 147-152.
31 Bertero, T., Gastaldi, C., Bourget-Ponzio, I., Mari, B., Meneguzzi, G., Barbry, P., Ponzio, G. and Rezzonico, R. 2013. Cdc25A targeting by miR-483-3p decreases CCNDCDK4/ 6 assembly and contributes to cell cycle arrest. Cell Death Differ 20, 800-811.   DOI   ScienceOn
32 Donzelli, M. and Draetta, G. F. 2003. Regulating mammalian checkpoints through Cdc25 inactivation. EMBO Rep 4, 671-677.   DOI   ScienceOn
33 Biomberg, I. and Hoffmann, I. 1999. Ectopic expression of Cdc25A accelerates the G(1)/S transition and leads to premature activation of cyclin E- and cyclin A-dependent kinases. Mol Cell Biol 19, 6183-6194.
34 But, P. P. H., Kimura, T., Sung, C. K. and Han, B. H. 1997. International collation of traditional folk medicine, pp. 137, Vol. 3, World scientific: New Jersey, USA.
35 Coulonval, K., Nockstaele, L., Paternot, S. and Roger, P. P. 2003. Phosphorylations of cyclin-dependent kinase 2 revisited using two-dimensional gel electrophoresis. J Biol Chem 278, 52052-52060.   DOI   ScienceOn
36 Dorai, T. and Aggarwal, B. B. 2004. Role of chemopreventive agents in cancer therapy. Cancer Lett 215, 129-140.   DOI   ScienceOn
37 Eymin, B., Claverie, P., Salon, C., Leduc, C., Col, E., Brambilla, E., Khochbin, S. and Gazzeri, S. 2006. p14ARF activates a Tip60-dependent and p53-independent ATM/ATR/CHK pathway in response to genotoxic stress. Mol Cell Biol 26, 4339-4350.   DOI   ScienceOn
38 Falck, J., Mailand, N., Syljuasen, R. G., Bartek, J. and Lukas, J. 2001. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410, 842-847.   DOI   ScienceOn
39 Galaktionov, K., Lee, A. K., Eckstein, J., Draetta, G., Meckler, J., Loda, M. and Beach, D. 1995. CDC25 phosphatases as potential human oncogenes. Science 269, 1575-1577.   DOI