Browse > Article
http://dx.doi.org/10.5352/JLS.2013.23.7.955

Potential Role of Genetic Engineering in Pest Management  

Kwon, Kisang (Department of Biomedical Laboratory Science, College of Health & Welfare, Kyungwoon University)
Kim, Bok Jo (Department of Biomedical Laboratory Science, College of Health & Welfare, Kyungwoon University)
Yu, Kweon (Neurophysiology Research Group, Korea Research Institute of Bioscience & Biotechnology)
Kwon, O-Yu (Department of Anatomy, College of Medicine, Chungnam National University)
Publication Information
Journal of Life Science / v.23, no.7, 2013 , pp. 955-961 More about this Journal
Abstract
Genetic engineering, which was started by the E. coli gene manipulation, has led to rapid development in all area of life sciences. Recently, genetic engineering, which is an insertion or a removal technique of a specific gene on chromosomes, has been established and is usefully available in the applied life sciences including medicine and agriculture. In this review, we briefly explain pest management focusing on Release of Insects carrying a Dominant Lethal (RIDL) that is a highly economic and environment-friendly method of biological pest control. Although at present RIDL confronts many difficulties in applying directly in fields, it will be one of the best methods for the pest management in the near future without pesticides and disturbing ecosystem by the continued development of genetic engineering. However, these powerful techniques must be considered with great care to avoid harm to ecosystem.
Keywords
Genetic engineering; Release of Insects carrying a Dominant Lethal (RIDL); pest management;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alphey, L. S. 2002. Re-engineering the sterile insect technique. Insect Biochem Mol Biol 32, 1243-1247.   DOI   ScienceOn
2 Bauser, C. A., Elick, T. A. and Fraser, M. J. 1996. Characterization of hitchhiker, a transposon insertion frequently associated with baculovirus FP mutants derived upon passage in the TN-368 cell line. Virology 216, 235-237.   DOI   ScienceOn
3 Bello, B., Resendez-Perez., D. and Gehring, W. J. 1998. Spatial and temporal targeting of gene expression in Drosophila by means of a tetracycline-dependent transactivator system. Development 125, 2193-2202.
4 Berghammer, A. J., Klingler, M. and Wimmer, E. A. 1999. A universal marker for transgenic insects. Nature 402, 370-371.   DOI   ScienceOn
5 Bibikova, M., Golic, M., Golic, K. G. and Carroll, D. 2002. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161, 1169-1175.
6 Brand, A. H. and Perrimon, N. 1993. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401-415.
7 Cary, L. C., Goebel, M., Corsaro, B. G., Wang, H. G., Rosen, E. and Fraser, M. J. 1989. Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172, 156-169.   DOI   ScienceOn
8 Catteruccia, F., Nolan, T., Blass, C., Muller, H. M., Crisanti, A., Kafatos, F. C. and Loukeris, T. G. 2000. Toward Anopheles transformation: Minos element activity in anopheline cells and embryos. Proc Natl Acad Sci USA 97, 2157-2162.   DOI   ScienceOn
9 Christophides, G. K. 2005. Transgenic mosquitoes and malaria transmission. Cell Microbiol 7, 325-333.   DOI   ScienceOn
10 Coates, C. J., Jasinskiene, N., Miyashiro, L. and James, A. A. 1998. Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci USA 95, 3748-3751.   DOI   ScienceOn
11 Cooley, L., Kelley, R. and Spradling, A. 1988. Insertional mutagenesis of the Drosophila genome with single P elements. Science 239, 1121-1128.   DOI
12 Dafa'alla, T. H., Condon, G. C., Condon, K. C., Phillips, C. E., Morrison, N. I., Jin, L., Epton, M. J., Fu, G. and Alphey, L. 2006. Transposon-free insertions for insect genetic engineering. Nat Biotechnol 24, 820-821.   DOI   ScienceOn
13 Gray, L. T., Fong, K. K., Pavelitz, T. and Weiner, A. M. 2012. Tethering of the conserved piggyBac transposase fusion protein CSB-PGBD3 to chromosomal AP-1 proteins regulates expression of nearby genes in humans. PLoS Genet 8, e1002972.   DOI
14 Dietzl, G., Chen, D., Schnorrer, F., Su, K. C.,Barinova, Y., Fellner, M., Gasser, B., Kinsey, K., Oppel, S., Scheiblauer, S., Couto, A., Marra, V., Keleman, K. and Dickson, B. J. 2007. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151-156.   DOI   ScienceOn
15 Fraser, S. E. and Bryant, P. J. 1985. Patterns of dye coupling in the imaginal wing disk of Drosophila melanogaster. Nature 317, 533-536.   DOI   ScienceOn
16 Fu, G., Condon, K. C., Epton, M.J., Gong, P., Jin, L., Condon, G. C., Morrison, N. I., Dafa'alla, T.H. and Alphey, L. 2007. Female-specific insect lethality engineered using alternative splicing. Nat Biotechnol 25, 353-357.   DOI   ScienceOn
17 Gong, P., Epton, M. J., Fu, G., Scaife, S., Hiscox, A., Condon, K. C., Condon, G. C., Morrison, N. I., Kelly, D. W., Dafa'alla, T., Coleman, P. G. and Alphey, L. 2005. A dominant lethal genetic system for autocidal control of the Mediterranean fruitfly. Nat Biotechnol 23, 453-456.   DOI   ScienceOn
18 Handler, A. M. 2004. Understanding and improving transgene stability and expression in insects for SIT and conditional lethal release programs. Insect Biochem Mol Biol 34, 121-130.   DOI   ScienceOn
19 Hediger, M., Niessen, M., Wimmer, E. A., Dubendorfer, A. and Bopp, D. 2001. Genetic transformation of the housefly Musca domestica with the lepidopteran derived transposon piggyBac. Insect Mol Biol 10, 113-119.   DOI   ScienceOn
20 Hong, S. H., Lee, K. S., Kwak, S. J., Kim, A. K., Bai, H., Jung, M. S., Kwon, O. Y., Song, W. J., Tatar, M. and Yu, K. 2012. Minibrain/Dyrk1a regulates food intake through the Sir2-FOXO-sNPF/NPY pathway in Drosophila and mammals. PLoS Genet 8, e1002857.   DOI   ScienceOn
21 Jasinskiene, N., Coates, C. J., Benedict, M. Q., Cornel, A. J., Rafferty, C. S., James, A. A. and Collins, F. H. 1998. Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly. Proc Natl Acad Sci USA 95, 3743-3747.   DOI   ScienceOn
22 Horn, C., Jaunich, B. and Wimmer, E. A. 2000. Highly sensitive, fluorescent transformation marker for Drosophila transgenesis. Dev Genes Evol 210, 623-629.   DOI
23 Horn, C., Offen, N., Nystedt, S., Hacker, U. and Wimmer, E. A. 2003. piggyBac-based insertional mutagenesis and enhancer detection as a tool for functional insect genomics. Genetics 163, 647-661.
24 Jacobson, J. W., Medhora, M. M. and Hartl, D. L. 1986. Molecular structure of a somatically unstable transposable element in Drosophila. Proc Natl Acad Sci USA 83, 8684-8688.   DOI   ScienceOn
25 Kuwayama, H., Yaginuma, T., Yamashita, O. and Niimi, T. 2006. Germ-line transformation and RNAi of the ladybird beetle, Harmonia axyridis. Insect Mol Biol 15, 507-512.   DOI   ScienceOn
26 Lee, K. S., Kwon, O. Y., Lee, J. H., Kwon, K., Min, K. J., Jung, S. A., Kim, A. K., You, K. H., Tatar, M. and Yu, K. 2008. Drosophila short neuropeptide F signalling regulates growth by ERK-mediated insulin signalling. Nat Cell Biol 10, 468-475.   DOI   ScienceOn
27 Loukeris, T. G., Arcà, B., Livadaras, I., Dialektaki, G. and Savakis, C. 1995. Introduction of the transposable element Minos into the germ line of Drosophila melanogaster. Proc Natl Acad Sci USA 92, 9485-9489.   DOI
28 Loukeris, T. G., Livadaras, I., Arca, B., Zabalou, S. and Savakis, C. 1995. Gene transfer into the medfly, Ceratitis capitata, with a Drosophila hydei transposable element. Science 270, 2002-2005.   DOI   ScienceOn
29 Michel, T., Reichhart, J.M., Hoffmann, J. A. and Royet, J. 2001. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414, 756-759.   DOI   ScienceOn
30 Miratul, M., Muqit, K. and Feany, M. B. 2002. Modelling neurodegenerative diseases in Drosophila: a fruitful approach? Nat Rev Neurosci 3, 237-243.
31 Nolan, T., Papathanos, P., Windbichler, N., Magnusson, K., Benton, J., Catteruccia, F. and Crisanti, A. 2011. Developing transgenic Anopheles mosquitoes for the sterile insect technique. Genetica 139, 33-39.   DOI
32 O'Brochta, D. A. 2005. Genetic manipulation of insects. Insect Biochem Mol Biol 3, 5647-648.
33 O'Brochta, D. A., Atkinson, P. W. and Lehane, M. J. 2000. Transformation of Stomoxys calcitrans with a Hermes gene vector. Insect Mol Biol 9, 531-538.   DOI   ScienceOn
34 Oliveira, S. G., Bao, W., Martins, C. and Jurka, J. 2012. Horizontal transfers of Mariner transposons between mammals and insects. Mob DNA 3, 14.   DOI   ScienceOn
35 Pinkerton, A. C., Michel, K., O'Brochta, D.A. and Atkinson, P. W. 2000. Green fluorescent protein as a genetic marker in transgenic Aedes aegypti. Insect Mol Biol 9, 1-10.   DOI   ScienceOn
36 Rong, Y. S. and Golic, K. G. 2000. Gene targeting by homologous recombination in Drosophila. Science 288, 2013-2018.   DOI   ScienceOn
37 Roseman, R. R., Swan, J. M. and Geyer, P. K. 1995. A Drosophila insulator protein facilitates dosage compensation of the X chromosome min-white gene located at autosomal insertion sites. Development 121, 3573-3582.
38 Rubin, G. M. and Spradling, A. C. 2006. Gene drive systems for insect disease vectors. Nat Rev Genet 7, 427-435.   DOI   ScienceOn
39 Sajwan, S., Takasu, Y., Tamura, T., Uchino, K., Sezutsu, H. and Zurovec, M. 2013. Efficient disruption of endogenous Bombyx gene by TAL effector nucleases. Insect Biochem Mol Biol 43, 17-23.   DOI   ScienceOn
40 Spradling, A. C. and Rubin, G. M. 1981. Drosophila genome organization: conserved and dynamic aspects. Annu Rev Genet 15, 219-264.   DOI   ScienceOn
41 Thomas, D. D., Donnelly, C. A., Wood, R. J. and Alphey, L. S. 2000. Insect population control using a dominant, repressible, lethal genetic system. Science 287, 2474-2476.   DOI   ScienceOn
42 Steven, P. S. and Fred, G. 1982. Gene drive systems for insect disease vectors. Genetic transformation of Drosophila with transposable element vectors. Science 218, 348-353.   DOI
43 Sumitani, M., Yamamoto, D. S., Oishi, K, Lee., J. M. and Hatakeyama, M. 2003. Germline transformation of the sawfly, Athalia rosae (Hymenoptera: Symphyta), mediated by a piggyBac-derived vector. Insect Biochem Mol Biol 33, 449-458.   DOI   ScienceOn
44 Tamura, T., Thibert, C., Royer, C., Kanda, T., Abraham, E., Kamba, M., Komoto, N., Thomas, J. L., Mauchamp, B., Chavancy, G., Shirk, P., Fraser, M., Prudhomme, J. C. and Couble, P. 2000. Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 18, 81-84.   DOI   ScienceOn
45 Venken, K. J., He, Y., Hoskins, R. A. and Bellen, H. J. 2006. P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 314, 1747-1751.   DOI   ScienceOn
46 Warren, R. W., Nagy, L., Selegue, J., Gates, J. and Carroll, S. 1994. Evolution of homeotic gene regulation and function in flies and butterflies. Nature 372, 458-461.   DOI   ScienceOn
47 Ward, T. W., Jenkins, M. S., Afanasiev, B. N., Edwards, M., Duda, B. A., Suchman, E., Jacobs-Lorena, M., Beaty, B. J. and Carlson, J. O. 2001. Aedes aegypti transducing densovirus pathogenesis and expression in Aedes aegypti and Anopheles gambiae larvae. Insect Mol Biol 10, 397-405.   DOI   ScienceOn
48 Wimmer, E. A. 2003. Innovations: applications of insect transgenesis. Nat Rev Genet 4, 225-232.
49 Woltjen, K., Michael, I. P., Mohseni, P., Desai, R., Mileikovsky, M., Hämäläinen, R., Cowling, R., Wang, W., Liu, P., Gertsenstein, M., Kaji, K., Sung, H. K. and Nagy, A. 2009. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458, 766-770.   DOI   ScienceOn
50 Xiong, Y., Burke, W. D.,Jakubczak, J. L. and Eickbush, T. H. 1988. Ribosomal DNA insertion elements R1Bm and R2Bm can transpose in a sequence specific manner to locations outside the 28S genes. Nucleic Acids Res 16, 10561-10573.   DOI
51 Yoshida, S., Shimada, Y., Kondoh, D., Kouzuma, Y., Ghosh, A. K., Jacobs-Lorena, M. and Sinden, R. E. 2007. Hemolytic C-type lectin CEL-III from sea cucumber expressed in transgenic mosquitoes impairs malaria parasite development. PLoS Pathog 3, e192.   DOI   ScienceOn