Browse > Article
http://dx.doi.org/10.5352/JLS.2013.23.7.847

Phylogenetic Relationships of the Genus Hemerocallis in Korea using rps16-trnK Sequences in Chloroplast DNA  

Huh, Man Kyu (Department of Molecular Biology, Dong-eui University)
Kwon, Oh Sung (Department of Molecular Biology, Dong-eui University)
Lee, Byeong Ryong (Department of Biology Education, Seowon University)
Publication Information
Journal of Life Science / v.23, no.7, 2013 , pp. 847-853 More about this Journal
Abstract
The genus Hemerocallis (family Xanthorthoeaceae) is a herbaceous species, some of which are very important in herbal medicines. We evaluated the rps16-trnK region of the chloroplast DNA of a representative sample of eight taxa in Korea to estimate phylogenetic relationships within the taxa of this genus. Due to differences in the number of inserted nucleotides, the aligned data for Hemerocallis ranged from 729 (H. aurantiaca) to 742 nucleotides (H. fulva var. kwanso), with a mean of 736. Although several small indels and 20 inserts were present, sequence variation within the Hemerocallis genus was mostly due to nucleotide substitutions. All rps16-trnK trees generated in Korea exhibited a well-solved topology, with high bootstrap support, irrespective of the methods (parsimony) and the setting used. The node of H. minor and H. littorea was strongly supported, with a high bootstrap value in three trees, and these two taxa were sistered with H. thunbergii. The number of chromosomes was not congruent with that found in a previous study with RAPD, but the number was in agreement with the results of this study.
Keywords
Hemerocallis; rps16-trnK; phylogenetic relationships; sequence variation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Andersson, L. and Rova, J. H. 1999. The rps16 intron and the phylogeny of the Rubioideae (Rubiaceae). Plant Syst Evol 214, 161-186.   DOI   ScienceOn
2 Chung, M. 2000. Spatial structure of three populations of Hemerocalis hakuuensis. Bot Bull Acad Sci 41, 231-236.
3 Chung, M. G. and Kang, S. S. 1994. Morphometric analysis of the genus Hemerocallis L. (Lilisceae) in Korea. J Plant Res 107, 165-175.   DOI   ScienceOn
4 Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783-791.   DOI   ScienceOn
5 Golenberg, E. M., Clegg, M. T., Durbin, M. L., Doebley, J. and Ma, D. P. 1993. Evolution of a noncoding region of the chloroplast genome. Mol Phylogenet Evol 2, 52-64.   DOI   ScienceOn
6 Han, H. M. 1996. Detection of genetic variability in daylily genus (Hemerocallis) using randomly amplified polymorphic DNAs. Donguk University, MS.
7 Kang, S. S. and Chung, M. G. 1994. Hemerocallis hakuunensis (Liliaceae) in Korea. Sida 16, 23-31.
8 Kumar, S. and Gadagkar, S. R. 2001. Disparity Index: A simple statistic to measure and test the homogeneity of substitution patterns between molecular sequences. Genetics 158, 1321-1327.
9 Kwon, K. S. 1980. Morphological and cytological studies on the genus Hemerocallis in Korea. Ewha Womans University, MS., Seoul.
10 Lee, T. B. 2003. Coloured Flora of Korea. Hyangmoon Publishing Co., Seoul, Korea.
11 Matsuoka, N. and Hotta, M. 1966. Classification of Hemerocallis in Japan and its vicinity. Acta Phytotax Geobot 22, 22-25.
12 Noguchi, J. and Hong, D. 2004. Multiple origins of the Japanese nocturnal Hemerocalis citrina. Int J Plant Sci 16, 219-230.
13 Noguchi, J., Hong, D. and Grant, W. F. 2004. The historical evolutionary development of Hemerocallis middendorfii (Hemerocallidaceae) revealed by non-coding regions in chloroplast DNA. Plant Syst Evol 247, 1-22.
14 Oxelman, B., Liden, M. and Berglund, D. 1997. Chloroplast rps16 intron phylogeny of the tribe Sileneae (Caryophyllaceae). Plant Syst Evol 206, 393-410.   DOI   ScienceOn
15 Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406-425.
16 Stout, A. B. 1935. The lemon daylily (Hemerocallis flava L.): its origin and status. New York Bot Gard 36, 61-68.
17 Shaw, J., Lickey, E. B., Beck, J. T., Farmer, S. B., Liu, W., Miller, J., Siripun, K. C., Winder, C. T., Schilling, E. E. and Small, R. L. 2005. The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 92, 142-166.   DOI   ScienceOn
18 Swofford, D. L. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4. Sunderland, Sinauer Associates, Inc. MA.
19 Stout, A. B. 1933. The flowering habits of daylilies. New York Bot Gard 34, 25-32.
20 Stout, A. B. 1941. The inflorescence in Hemerocallis - 1. Bull Torr Bot Club 73, 134-154.
21 Tajima, F. 1989. Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics 123, 585-595.
22 Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28, 2731-2739.   DOI   ScienceOn
23 Zomlefer, W. B. 1998. The genera of Hemerocallidaceae in the south-eastern United States. Harv Pap Bot 3, 113-145.
24 Zwickl, D. J. 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph. D. dissertation, The University of Texas at Austin.