Browse > Article
http://dx.doi.org/10.5352/JLS.2013.23.1.131

The Role of Sirtuin-2 in Tubular Forming Activity of Human Umbilical Vein Endothelial Cells  

Jung, Seok Yun (Laboratory of Vascular Medicine & Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University)
Kim, Chul Min (Laboratory of Vascular Medicine & Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University)
Kim, Da Yeon (Laboratory of Vascular Medicine & Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University)
Lee, Dong Hyung (Department of Obstetrics & Gynecology, College of Medicine, Pusan National University)
Lee, Kyu Sup (Department of Obstetrics & Gynecology, College of Medicine, Pusan National University)
Kwon, Sang-Mo (Laboratory of Vascular Medicine & Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University)
Publication Information
Journal of Life Science / v.23, no.1, 2013 , pp. 131-136 More about this Journal
Abstract
Sirtuin proteins have emerged as important modulators of several age-associated diseases. These include cancer and diabetes, as well as cardiovascular and neurodegenerative diseases. Among the sirtuin family members, SIRT2 mRNA is strongly expressed. To investigate the pathophysiological significance of SIRT2 as a primary regulator of angiogenesis, we focused on the biological role of SIRT2 under hypoxic conditions, examining the gene expression pattern of sirtuin family members in human umbilical vein endothelial cells (HUVECs). SIRT2 was expressed primarily in the cytoplasm, but it was dynamically trans-localized in the nuclear by hypoxia stimuli. Interestingly, both SIRT2 and the pro-angiogenic factor, VEGF, were up- regulated by hypoxia. A Matrigel assay demonstrated that the HUVECs formed a tube-like structure under hypoxia. The SIRT2 inhibitor, AK-1, significantly decreased the tube-forming activity of the HUVECs under either normoxia or hypoxia conditions. These findings suggest that SIRT2 might be a key regulator of angiogenesis.
Keywords
SIRT2; hypoxia; angiogenesis; HUVEC;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ahuja, N., Schwer, B., Carobbio, S., Waltregny, D., North, B. J., Castronovo, V., Maechler, P. and Verdin, E. 2007. Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. J Biol Chem 282, 33583-33592.   DOI   ScienceOn
2 Alcendor, R. R., Gao, S., Zhai, P., Zablocki, D., Holle, E., Yu, X., Tian, B., Wagner, T., Vatner, S. F. and Sadoshima, J. 2007. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res 100, 1512-1521.   DOI   ScienceOn
3 Baur, J. A., Pearson, K. J., Price, N. L., Jamieson, H. A., Lerin, C., Kalra, A., Prabhu, V. V., Allard, J. S., Lopez-Lluch, G., Lewis, K., Pistell, P. J., Poosala, S., Becker, K. G., Boss, O., Gwinn, D., Wang, M., Ramaswamy, S., Fishbein, K. W., Spencer, R. G., Lakatta, E. G., Le Couteur, D., Shaw, R. J., Navas, P., Puigserver, P., Ingram, D. K., de Cabo, R. and Sinclair, D. A. 2006. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337-342.   DOI   ScienceOn
4 Carreau, A., El Hafny-Rahbi, B., Matejuk, A., Grillon, C. and Kieda, C. 2011. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med 15, 1239-1253.   DOI   ScienceOn
5 Dioum, E. M., Chen, R., Alexander, M. S., Zhang, Q., Hogg, R. T., Gerard, R. D. and Garcia, J. A. 2009. Regulation of hypoxia-inducible factor 2 alpha signaling by the stress-responsive deacetylase sirtuin 1. Science 324, 1289-1293.   DOI   ScienceOn
6 Frye, R. A. 2000. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 273, 793-798.   DOI   ScienceOn
7 Haigis, M. C. and Sinclair, D. A. 2010. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5, 253-295.   DOI   ScienceOn
8 Krock, B. L., Skuli, N. and Simon, M. C. 2011. Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2, 1117-1133.   DOI   ScienceOn
9 Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., Messadeq, N., Milne, J., Lambert, P., Elliott, P., Geny, B., Laakso, M., Puigserver, P. and Auwerx, J. 2006. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127, 1109-1122.   DOI   ScienceOn
10 Landry, J., Sutton, A., Tafrov, S. T., Heller, R. C., Stebbins, J., Pillus, L. and Sternglanz, R. 2000. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci USA 97, 5807-5811.   DOI   ScienceOn
11 Milne, J. C., Lambert, P. D., Schenk, S., Carney, D. P., Smith, J. J., Gagne, D. J., Jin, L., Boss, O., Perni, R. B., Vu, C. B., Bemis, J. E., Xie, R., Disch, J. S., Ng, P. Y., Nunes, J. J., Lynch, A. V., Yang, H., Galonek, H., Israelian, K., Choy, W., Iffland, A., Lavu, S., Medvedik, O., Sinclair, D. A., Olefsky, J. M., Jirousek, M. R., Elliott, P. J. and Westphal, C. H. 2007. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712-716.   DOI   ScienceOn
12 Lim, J. H., Lee, Y. M., Chun, Y. S., Chen, J., Kim, J. E. and Park, J. W. 2010. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol Cell 38, 864-878.   DOI   ScienceOn
13 Liszt, G., Ford, E., Kurtev, M. and Guarente, L. 2005. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem 280, 21313-21320.   DOI   ScienceOn
14 Mattagajasingh, I., Kim, C. S., Naqvi, A., Yamamori, T., Hoffman, T. A., Jung, S. B., DeRicco, J., Kasuno, K. and Irani, K. 2007. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci USA 104, 14855-14860.   DOI   ScienceOn
15 North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M. and Verdin, E. 2003. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 11, 437-444.   DOI   ScienceOn
16 North, B. J. and Verdin, E. 2007. Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis. PLoS One 2, e784.   DOI
17 Outeiro, T. F., Kontopoulos, E., Altmann, S. M., Kufareva, I., Strathearn, K. E., Amore, A. M., Volk, C. B., Maxwell, M. M., Rochet, J. C., McLean, P. J., Young, A. B., Abagyan, R., Feany, M. B., Hyman, B. T. and Kazantsev, A. G. 2007. Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson's disease. Science 317, 516-519.   DOI   ScienceOn
18 Sauve, A. A., Wolberger, C., Schramm, V. L. and Boeke, J. D. 2006. The biochemistry of sirtuins. Annu Rev Biochem 75, 435-465.   DOI   ScienceOn
19 Potente, M., Ghaeni, L., Baldessari, D., Mostoslavsky, R., Rossig, L., Dequiedt, F., Haendeler, J., Mione, M., Dejana, E., Alt, F. W., Zeiher, A. M. and Dimmeler, S. 2007. SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev 21, 2644-2658.   DOI   ScienceOn
20 Saunders, L. R. and Verdin, E. 2007. Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 26, 5489-5504.   DOI   ScienceOn
21 Smith, J. S., Brachmann, C. B., Celic, I., Kenna, M. A., Muhammad, S., Starai, V. J., Avalos, J. L., Escalante- Semerena, J. C., Grubmeyer, C., Wolberger, C. and Boeke, J. D. 2000. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci USA 97, 6658-6663.   DOI   ScienceOn
22 Tanner, K. G., Landry, J., Sternglanz, R. and Denu, J. M. 2000. Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc Natl Acad Sci USA 97, 14178-14182.   DOI   ScienceOn
23 Wang, G. L., Jiang, B. H., Rue, E. A. and Semenza, G. L. 1995 Hypoxia-inducible factor 1 is a basic-helix-loop-helix- PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad. Sci USA 92, 5510-5514.   DOI   ScienceOn
24 Wang, G. L. and Semenza, G. L. 1993. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem 268, 21513-21518.