Browse > Article
http://dx.doi.org/10.5352/JLS.2013.23.12.1460

Anticoagulant and Fibrinolytic Activities of Hwanggeumchal Sorghum In Vitro  

Kim, Min Soo (Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University)
Oh, In Taek (Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University)
Jun, Do Youn (Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University)
Lee, Ji Young (Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University)
Sohn, Ho-Yong (Department of Food and Nutrition, College of Human Ecology, Andong National University)
Kwak, Do Yeon (Functional Cereal Crop Research Division, NICS, RDA)
Seo, Myung Chul (Crop Environment Division, NICS, RDA)
Woo, Koan Sik (Functional Cereal Crop Research Division, NICS, RDA)
Ko, Jee Yeon (Functional Cereal Crop Research Division, NICS, RDA)
Jung, Tae Wook (Functional Cereal Crop Research Division, NICS, RDA)
Nam, Min Hee (Functional Cereal Crop Research Division, NICS, RDA)
Woo, Mi Hee (Department of Pharmacology, College of Pharmacology, Daegu Catholic University)
Kim, Young Ho (Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University)
Publication Information
Journal of Life Science / v.23, no.12, 2013 , pp. 1460-1470 More about this Journal
Abstract
To examine whether miscellaneous cereal grains have an antithrombotic effect, we investigated the anticoagulant activity of 80% ethanol extracts from eleven selected miscellaneous cereal grains. The 80% ethanol extract of hwanggeumchal sorghum (Sorghum bicolor) showed the highest anticoagulant activity, followed by that of green foxtail millet grains, in terms of thrombin time (TT). When the ethanol extract of hwanggeumchal sorghum was sequentially fractionated with n-hexane, methylene chloride, ethyl acetate, and n-butanol, the majority of the TT-inhibitory activity was detected in the hexane and methylene chloride fractions. Whereas aspirin (final conc. 480 ${\mu}g/ml$) prolonged TT by 2-fold, the ethanol extract, hexane fraction, and methylene chloride fraction in the same dose prolonged TT by 2.2-fold, 2.9-fold, and 2.5-fold, respectively. The ethanol extract of hwanggeumchal sorghum could delay activated partial thromboplastin time (APTT) as well as prothrombin time (PT). Although the APTT-inhibitory activity of the ethanol extract was mainly partitioned into the hexane and methylene chloride fractions, the PT-inhibitory activity of the ethanol extract was solely partitioned into the hexane fraction. The APTT- and PT-inhibitory activities of these organic solvent fractions were more potent than those of the control warfarin (final conc. 3.13 mg/ml). The TT-inhibitory activity of the ethanol extract was heat-stable and acid-stable. The ethanol extract, hexane fraction, and methylene chloride fraction of hwanggeumchal sorghum appeared to possess a direct fibrinolytic activity toward fibrin clotting. These results show that hwanggeumchal sorghum can exert anticoagulant and fibrinolytic effects and, thus, have the potential to be applicable as antithrombotic dietary sources.
Keywords
Anticoagulant activity; antithrombotic dietary source; fibrinolytic activity; hwanggeumchal sorghum (Sorghum bicolor) grains; miscellaneous cereal grains;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Nagda, K. K., Ganeriwal, S. K., Nagda, K. C. and Diwan, A. M. 1983. Effect of onion and garlic on blood coagulation and fibrinolysis in vitro. Indian J Physiol Pharmacol 27,141-145.
2 Park, M. Y., Kim, J. H. and Park, D. S. 2011. Anti-inflammatory activities of hog millet (Panicum miliaceum L.) in murine macrophages through IRAK-4 signaling. Korean J Food Nutr 24, 268-272.   과학기술학회마을   DOI   ScienceOn
3 Raftery, A. T. 1981. Method for measuring fibrinolytic activity in a single layer of cells. Arch J Clin Pathol 34, 625-629.   DOI
4 Rajput, M. S., Mathur, V., Agrawal, P., Chandrawanshi, H. K. and Pilaniya, U. 2011. Fibrinolytic activity of kaempferol isolated from the fruits of Lagenaria siceraria (Molina) Standley. Nat Prod Res 25, 1870-1875.   DOI   ScienceOn
5 Riddel, J. P. Jr., Aouizerat, B. E., Miaskowski, C. and Lillicrap, D. P. 2007. Theories of blood coagulation. J Pediatr Oncol Nurs 24, 123-131.   DOI   ScienceOn
6 Sahyoun, N. R., Jacques, P. F., Zhang, X. L., Juan, W. and McKeown, N. M. 2006. Whole-grain intake is inversely associated with the metabolic syndrome and mortality in older adults. Am J Clin Nutr 83, 124-131.
7 Slavin, J. L., Martini, M. C., Jacobs, D. R. and Marquart, L. 1999. Plausible mechanisms for the protectiveness of whole grains. Am J Clin Nutr 70, 459S-463S.
8 Slavin, J. 2004. Whole grains and human health. Nutr Res Rev 17, 99-110.   DOI   ScienceOn
9 Sohn, H. Y., Kwon, C. S., Son, K. H., Kwon, G. S., Kwon, Y. S., Ryu, H. Y. and Kum E. J. 2005. Antithrombosis and antioxidant activity of methanol extract from different brands of rice. J Korean Soc Food Sci Nutr 34, 593-598.   DOI   ScienceOn
10 Taussig, S. J. and Batkin, S. 1988. Bromelain. The enzyme complex of pineapple (Ananas comosus) and its clinical application. J Ethnopharmacol 2, 191-203.
11 Torres-Urrutia, C., Guzman, L., Schmeda-Hirschmann, G., Moore-Carrasco, R., Alarcon, M., Astudillo, L., Gutierrez, M., Carrasco, G., Yuri, J. A., Gwak, H. S. and Chun, I. K.2000. Antiplatelet, anticoagulant, and fibrinolytic activity in vitro of extracts from selected fruits and vegetables. Blood Coagul Fibrinolysis 22, 197-205.
12 Ulbricht, T. L. and Southgate, D. A. 1991. Coronary heart disease: seven dietary factors. Lancet 338, 985-992.   DOI   ScienceOn
13 Verma, S. K. and Bordia, A. 2001. Ginger, fat and fibrinolysis. Indian J Med Sci 55, 83-86.
14 Vine, A. K. Recent advances in haemostasis and thrombosis. 2009. Retina 29, 1-7.   DOI   ScienceOn
15 Wee, J. J., Kim, Y. S., Kyung, J. S., Song. Y. B., Do, J. H., Kim. D. C. and Lee, S. D. 2010.Identification of anticoagulant components in Korean red ginseng. J Ginseng Res 34, 355-362   DOI   ScienceOn
16 Yamamoto, J., Yamada, K., Naemura, A., Yamashita, T. and Arai, R.2005. Testing various herbs for antithrombotic effect. Nutrition 21, 580-587.   DOI   ScienceOn
17 Hoppe, B., Tolou, F., Dörner, T., Kiesewetter, H. and Salama, A. 2006. Gene polymorphisms implicated in influencing susceptibility to venous and arterial thromboembolism: frequency distribution in a healthy German population. Thromb Haemost 96, 465-470.
18 Jin, Y. R., Yu, J. Y., Lee, J. J., You, S. H., Chung, J. H., Noh, J. Y., Im, J. H., Han, X. H., Kim, T. J., Shin, K. S., Wee, J. J. and Yun, Y. P. 2007. Antithrombotic and antiplatelet activities of Korean red ginseng extract. Basic Clin Pharmacol Toxicol 100, 170-175.   DOI   ScienceOn
19 Joshipura, K. J., Ascherio, A., Manson, J. E., Stampfer, M. J., Rimm, E. B., Speizer, F. E., Hennekens, C. H., Spiegelman, D. and Willett, W. C. 1999. Fruit and vegetable intake in relation to risk of ischemic stroke. JAMA 282, 1233-1239.   DOI   ScienceOn
20 Joshipura, K. J., Hu, F. B., Manson, J. E., Stampfer, M. J., Rimm, E. B., Speizer, F. E., Colditz, G., Ascherio, A., Rosner, B., Spiegelman, D. and Willett, W. C. 2001. The effect of fruit and vegetable intake on risk for coronary heart disease. Ann Intern Med 134, 1106-1114.   DOI   ScienceOn
21 Kil, H. Y., Seong, E. S., Ghimire, B. K., Chung, I. M., Kwon, S. S., Goh, E. J., Heo, K., Kim, M. J., Lim, J. D., Lee, D. K. and Yu, C. Y. 2009. Antioxidant and antimicrobial activities of crude sorghum extract. Food Chem 115, 1234-1239.   DOI   ScienceOn
22 Kim, J. S., Hyun, T. K. and Kim, M. J. 2011. The inhibitory effects of ethanol extracts from sorghum, foxtail millet and proso millet on $\alpha$-glucosidase and $\alpha$-amylase activities. Food Chem 124, 1647-1651.   DOI   ScienceOn
23 Kwak, C. S., Lim, S. J., Kim, S. A., Park, S. C. and Lee, M. S. 2004. Antioxidative and antimutagenic effects of Korean buckwheat, sorghum, millet and job's tears. J Korean Soc Food Sci Nutr 33, 921-929.   DOI   ScienceOn
24 Kweon, Y. M. and Park, K. Y. 1998. Antimutagenic and anticarcinogenic effect of sorghum. J Korean Assoc Cancer Prev3, 128-135.
25 Lane, D. A. and Grant, P. J. 2000. Role of hemostatic gene polymorphisms in venous and arterial thrombotic disease. Blood 95, 1517-1532.
26 Lippi, G., Franchini, M. and Targher, G. 2011. Arterial thrombus formation in cardiovascular disease. Nat Rev Cardiol 8, 502-512.   DOI
27 Marquart, L., Wiemer, K. L., Jones, J. M. and Jacob, B. 2003. Whole grain health claims in the USA and other efforts toincrease whole-grain consumption. Proc Nutr Soc 62, 151-160.   DOI   ScienceOn
28 Lison, S. and Spannagl, M. 2011. Monitoring of direct anticoagulants. Wien Med Wochenschr 161, 58-62.   DOI
29 Liu, S., Manson, J. E., Lee, I. M, Cole, S. R., Hennekens, C. H., Willett, W. C. and Buring, J. E. 2000. Fruit and vegetable intake and risk of cardiovascular disease: the women' health study. Am J Clin Nutr 72, 922-928.
30 Lunchtman-Jones, L. and Broze, J. 1995. The current status of coagulation. Ann Med 27, 47-52.   DOI
31 Melzig, M. F. and Henke, K. 2005. Inhibition of thrombin activity by selected natural products in comparison to neutrophil elastase. Planta Med 71, 787-789.   DOI   ScienceOn
32 Ajjan, R. and Grant, P. J. 2006. Coagulation and atherothrombotic disease. Atherosclerosis 186, 240-259.   DOI   ScienceOn
33 Astrup, T. and Mullertz, S. 1952. The fibrin plate method for estimating fibrinolytic activity. Arch Biochem Biophys 40,346-351.   DOI   ScienceOn
34 Awika, J. M. and Rooney, L. W. 2004. Sorghum phytochemicals and their potential impact on human health. Phytochemistry 65, 1199-1221.   DOI   ScienceOn
35 Bazzano, L. A., He, J., Ogden, L. G., Loria, C. M., Vupputuri, S., Myers, L. and Whelton, P. K. 2002. Fruit and vegetable intake and risk of cardiovascular disease in US adults: the first national health and nutrition examination survey epidemiologic follow-up study. Am J Clin Nutr 76, 93-99.
36 Fardet, A. 2010. New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre? Nutr Res Rev 23, 65-134.
37 Choi, H. S. and Sa, Y. S. 2001. Fibrinolytic and antithrombotic protease from Spirodela polyrhiza. Biosci Biotechnol Biochem 65, 781-786.   DOI   ScienceOn
38 Dahback, B. 2005. Blood coagulation and its regulation by anticoagulant pathways: Genetic pathogenesis of bleeding and thrombotic disease. J Intern Med 257, 209-223.   DOI   ScienceOn
39 Fan, J., Zhang, Y., Chang, X., Zhang, B., Jiang, D., Saito, M. and Li, Z. 2009. Antithrombotic and fibrinolytic activities of methanolic extract of aged sorghum vinegar. J Agric Food Chem 57, 8683-8687.   DOI   ScienceOn
40 Flanders, M. M., Crist, R. and Rodgers, G. M. 2003. Comparison of five thrombin time reagents. Clin Chem 49,169-172.   DOI   ScienceOn
41 Gillman, M. W., Cupples, L. A., Gagnon, D., Posner, B. M., Ellison, R. C., Castelli, W. P. and Wolf, P. A. 1995. Protective effect of fruits and vegetables on development of stroke in men. JAMA 273, 1113-1117.   DOI   ScienceOn
42 Gwak, H. S. and Chun, I. K. 2000. Preformulation study of Aspalatone, a new antithrombotic agent. J Appl Pharm 8, 332-337.
43 Ha, Y. D. and Lee, S. P. 2001. Characteristics of proteins in Italian millet, sorghum and common millet. Korean J Postharvest Sci Technology 8, 187-192.   과학기술학회마을
44 Hoffman, M. 2004. Remodeling the blood coagulation cascade. J Thromb Thrombolysis 16, 17-20.