Browse > Article
http://dx.doi.org/10.5352/JLS.2013.23.10.1280

[6]-Gingerol Attenuates Autophagy and Increases Activities of Antioxidative Defense Enzymes in Mice with Cerulein-induced Acute Pancreatitis  

Kim, Sung Ok (Team for Scientification of Korean Medical Intervention (BK21 Plus) & Department of Herbal Pharmacology, College of Oriental Medicine, Daegu Haany University)
Choi, Yung Hyun (Department of Biochemistry, Dongeui University College of Oriental Medicine, Anti-Aging Research Center & Blue-Bio Industry RIC, Dongeui University)
Publication Information
Journal of Life Science / v.23, no.10, 2013 , pp. 1280-1287 More about this Journal
Abstract
The current study investigated the effects of [6]-gingerol, a ginger phytochemical, on the expression of autophagy-related genes and the activation of antioxidative enzymes in the pancreas of mice with cerulein-induced acute pancreatitis. The following were studied: pancreatic edema, ${\alpha}$-amylase activity in serum, expression of autophagy genes, activities of antioxidative defense enzymes, such as superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and the production of lipid peroxidation (LPO). The results revealed that cerulein-induced edema in the pancreas and ${\alpha}$-amylase activity in the cerulein group significantly increased compared with that of the control. However, that of the [6]-gingerol pretreated group was significantly decreased compared with that of the cerulein-alone injected group (positive control). There was no significant difference compared with that of control. The expression of autophagy-related proteins, including Beclin-1 and cleaved microtubule-associated protein 1 light chain 3, were significantly increased in the positive control but significantly decreased in the [6]-gingerol-pretreated group. Furthermore, the activities of SOD and GSH-Px in the positive control were decreased compared with those of the control. However, those of the [6]-gingerol pretreated group were significantly increased compared with those of the cerulein-alone group. The mRNA levels and antioxidant enzyme activities were similar. The production of LPO in the cerulein with and without [6]-gingerol groups was increased by 133.1% and 26.3%, respectively, compared with that of the control, whereas that of the [6]-gingerol-pretreated group was significantly decreased by 48.5% compared with that of the positive control. Therefore, [6]-gingerol may be a strong candidate in reducing autophagy and LPO production and in enhancing antioxidative enzyme activities to help prevent acute and chronic pancreatitis.
Keywords
Antioxidant enzyme; autophagy; cerulein; [6]-gingerol; pancreatitis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Chance, B., Sies, H. and Boveris, A. 1979. Hydroperoxide metabolism in mammalian organs. Physiol Rev 59, 527-605.   DOI
2 Dabrowski, A., Gabryelewicz, A., Wereszczynska-Siemiatkowska, U. and Chyczewski, L. 1998. Oxygen-derived free radicals in cerulein-induced acute pancreatitis. Scand J Gastroenterol 23, 1245-1249.
3 Devy, C. and Gautier, R. 1990. New perspectives on the biochemistry of superoxide anion and the efficiency of superoxide dismutase. Biochem Pharmacol 39, 399-405.   DOI   ScienceOn
4 Dugasani, S., Pichika, M. R., Nadarajah, V. D., Balijepalli, M. K., Tandra, S. and Korlakunta, J. N. 2010. Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J Ethnopharmacol 127, 515-520.   DOI   ScienceOn
5 Duthie, G. G., Duthie, S. J. and Kyle, J. A. 2000. Plant polyphenols in cancer and heart disease: implications as nutritional antioxidants. Nutr Res Rev 13, 79-106.   DOI   ScienceOn
6 Esrefoglu, M. 2012. Oxidative stress and benefits of antioxidant agents in acute and chronic hepatitis. Hepat Mon 12, 160-167.   DOI
7 Fortunato, F., Burgers, H., Bergmann, F., Rieger, P., Buchler, M. W., Kroemer, G. and Werner, J. 2009. Impaired autolysosome formation correlates with Lamp-2 depletion: role of apoptosis, autophagy and necrosis in pancreatitis. Gastroenterology 137, 350-360.   DOI   ScienceOn
8 Hashimoto, D., Ohmuraya, M., Hirota, M., Yamamoto, A., Suyama, K., Ida, S., Okumura, Y., Takahashi, E., Kido, H., Araki, K., Baba, H., Mizushima, N. and Yamamura, K. 2008. Involvement of autophagy in trypsinogen activation within the pancreatic acinar cells. J Cell Biol 181, 1065-1072.   DOI   ScienceOn
9 Horton, A. A. and Fairhurst, S. 1987. Lipid peroxidation and mechanisms of toxicity. Crit Rev Toxicol 18, 27-79.   DOI   ScienceOn
10 Jung, K. W., Won, Y. J., Kong, H. J., Oh, C. M., Seo, H. G. and Lee, J. S. 2013. Cancer statistics in Korea: incidence, mortality, survival and prevalence in 2010. Cancer Res Treat 45, 1-14.   DOI   ScienceOn
11 Katiyar, S. K, Agarwal, R. and Mukhtar, H. 1996. Inhibition of tumor promotion in SENCAR mouse skin by ethanol extract of Zingiber officinale rhizome. Cancer Res 56, 1023-1030.
12 Kiuchi, F., Shibuya, M. and Sankawa, U. 1982. Inhibitors of prostaglandin biosynthesis from ginger. Chem Pharm Bull (Tokyo) 30, 754-757.   DOI   ScienceOn
13 Kim, E. H., Sohn, S., Kwon, H. J., Kim, S. U., Kim, M. J., Lee, S. J. and Choi, K. S. 2007. Sodium selenite induces superoxide-mediated mitochondrial damage and subsequent autophagic cell death in malignant 21 glioma cells. Cancer Res 67, 6314-6324.   DOI   ScienceOn
14 Kim, S. O. and Choe, W. K. 2011. Effect of EGCG on expression of neurogenin 3 via the MAP kinase signaling pathway in AR42J cells, a rat pancreatic tumor cell line. Korean J Nutr 44, 196-202.   과학기술학회마을   DOI   ScienceOn
15 Kim, S. O., Kim, M. R. and Choe, W. K. 2012. Green tea polyphenol (-)-epigallocatechin-3-gallate regulated autophagy in cerulein-induced acute pancreastitis via inhibition of MAP kinase pathway. Cancer Prev Res 17, 232-238.
16 Kondo, Y., Kanzawa, T., Sawaya, R. and Kondo, S. 2005. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5, 726-734.   DOI   ScienceOn
17 Lee, B. S., Ko, M. S., Kim, H. J., Kwak, I. S., Kim, D. H. and Chung, B. W. 2006. Separation of 6-gingerol from ginger (Zingiber officinale Roscoe) and antioxidative activity. Korean J Biotechnol Bioeng 21, 484-488.
18 Liu, Y., Borchert, G. L., Donald, S. P., Surazynski, A., Hu, C. A., Weydert, C. J., Oberley, L. W. and Phang, J. M. 2005. MnSOD inhibits proline oxidase-induced apoptosis in colorectal cancer cells. Carcinogenesis 26, 1335-1342.   DOI   ScienceOn
19 Melov, S. 2009. Mitochondrial oxidative stress. Physiologic consequences and potential for a role in aging. Ann N Y Acad Sci 908, 219-225.
20 Levine, B. and Kroemer, G. 2008. Autophagy in the pathogenesis of disease. Cell 132, 27-42.   DOI   ScienceOn
21 Mizushima, N., Yoshimori, T. and Levine, B. 2010. Methods in mammalian autophagy research. Cell 140, 313-326.   DOI   ScienceOn
22 Morimitsu, Y., Nakagawa, Y., Hayashi, K., Fujii, H., Kumagai, T., Nakamura, Y., Osawa, T., Horio, F., Itoh, K., Iida. K., Yamamoto, M. and Uchida, K. A. 2002. Sulforaphane analogue that potently activates the Nrf2- dependent detoxification pathway. J Biol Chem 277, 3456-3463.   DOI   ScienceOn
23 Paterniti, I., Mazzon, E., Riccardi, L., Galuppo, M., Impellizzeri, D., Esposito, E., Bramanti, P., Cappellani, A. and Cuzzocrea, S. 2012. Peroxisome proliferator-activated receptor ${\beta}/{\delta}$ agonist GW0742 ameliorates cerulein- and taurocholate-induced acute pancreatitis in mice. Surgery 152, 90-106.   DOI   ScienceOn
24 Patlolla, A. K., Barnes, C., Hackett, D. and Tchounwou, P. B. 2009. Potassium dichromate induced cytotoxicity, genotoxicity and oxidative stress in human liver carcinoma (HepG2) cells. Int J Environ Res Public Health 6, 643-653.   DOI
25 Pharmacology of Oriental Medicine Textbook Editing Committee. 2010. Pharmacology of Oriental medicine, pp. 594, 3rd ed., Shinilbooks,Yungdongfor-gu, Seoul, Repbulic of Korea.
26 Qu, X., Yu, J., Bhagat, G., Furuya, N., Hibshoosh, H., Troxel, A., Rosen, J., Eskelinen, E. L., Mizushima, N., Ohsumi, Y., Cattoretti, G. and Levine, B. 2003. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112, 1809-1920.   DOI   ScienceOn
27 Rosenfeldt, M. T. and Ryan, K. M. 2009. The role of autophagy in tumour development and cancer therapy. Expert Rev Mol Med 11, 1-20.   DOI   ScienceOn
28 Steinberg, W. and Tenner, S. 1994. Acute pancreatitis. N Engl J Med 330, 1198-1210.   DOI   ScienceOn
29 Shanmugam, M. K. and Bhatia, M. 2010. The role of pro-inflammatory molecules and pharmacological agents in acute pancreatitis and sepsis. Inflamm Allergy Drug Targets 9, 20-31.   DOI   ScienceOn
30 Spencer, S. R., Xue, L. A., Klenz, E. M. and Talalay, P. 1991. The potency of inducers of NAD(P)H: (quinone-acceptor) oxidoreductase parallels their efficiency as substrates for glutathione transferases. Structural and electronic correlations. Biochem J 273, 711- 717.   DOI
31 Takabayashi, F. and Harada, N. 1997. Effects of green tea catechins (polyphenon 100) on cerulein-induced acute pancreatitis in rats. Pancreas 14, 276-279.   DOI   ScienceOn
32 Takahashi, M., Shibata, M. and Niki, E. 2001. Estimation of lipid peroxidation of live cells using fluorescent probe. Free Radic Biol Med 31, 164-174.   DOI   ScienceOn
33 Thomson, M., Al-Qattan, K. K., Al-Sawan, S. M., Alnaqeeb, M. A., Khan, I. and Ali, M. 2002. The use of ginger (Zingiber officinale Roscoe) as a potential anti-inflammatory and antithrombotic agent. Prostaglandins Leukot Essent Fatty Acids 67, 475-478.   DOI   ScienceOn
34 Zaninovic, V., Gukovskaya, A. S., Gukovsky, I., Mouria, M. and Pandol, S. J. 2000. Cerulein upregulates ICAM-1 in pancreatic acinar cells, which mediates neutrophil adhesion to these cells. Am J Physiol Gastrointest Liver Physiol 279, G666-G676.