Browse > Article
http://dx.doi.org/10.5352/JLS.2013.23.10.1246

Organic Solvent-tolerant Lipase from Pseudomonas sp. BCNU 154  

Choi, Hye Jung (Department of Biology and Interdisciplinary Program for Biotechnology, Changwon National University)
Hwang, Min Jung (Department of Biology and Interdisciplinary Program for Biotechnology, Changwon National University)
Seo, Jeoung-Yoon (Department of Environmental Engineering, Changwon National University)
Joo, Woo Hong (Department of Biology and Interdisciplinary Program for Biotechnology, Changwon National University)
Publication Information
Journal of Life Science / v.23, no.10, 2013 , pp. 1246-1251 More about this Journal
Abstract
An organic solvent-tolerant lipase of Pseudomonas sp. BCNU 154 that was isolated from wastewater in the industrial complex region had optimal activity at $37^{\circ}C$ and pH 8. This crude extracellular lipase from BCNU 154 exhibited maximum stability in toluene, retaining about 6.01 U/ml (117.53%) activity for 2 h. $Ca^{2+}$, $Mg^{2+}$, $NH_4{^+}$, and $Na^+$ ions and triton X-100 activated the enzymes, whereas $Ba^{2+}$, $Hg^{2+}$, and $Zn^{2+}$ ions inhibited their activity. Pseudomonas sp. BCNU 154 lipase revealed stable activity comparable to that of the commercial immobilized Novozym 435. Thus, this organic solvent-tolerant lipase could have potential as a whole cell biocatalyst in industrial chemical processes without the use of immobilization.
Keywords
Lipase stability; organic solvent tolerant lipase; Pseudomonas sp.; Pseudomonas sp. BCNU 154;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Aono, R., Itoh, M., Inoue, A. and Horikoshi, K. 1992. Isolation of novel toluene-tolerant strain Pseudomonas aeruginosa. Biosci Biotechnol Biochem 56, 145-146.   DOI
2 Dandavate, V., Jinjala, J., Keharia, H. and Madamwar, D. 2009. Production, partial purification and characterization of organic solvent tolerant lipase from Burkholderia multivorans V2 and its application for ester synthesis. Bioresour Technol 100, 3374-3381.   DOI   ScienceOn
3 Fukuda, H., Kondo, A. and Noda, H. 2001. Biodisel fuel production by transesterificaion of oils. J Biosci Bioeng 92, 405-416.   DOI   ScienceOn
4 Ruchi, G., Anshu, G. and Khare, S. K. 2008. Lipase from solvent tolerant Pseudomonas aeruginosa strain: production optimization by response surface methodology and application. Bioresour Thehnol 99, 4796-4802.   DOI   ScienceOn
5 Hasan, F., Shah, A. A. and Hameed, A. 2006. Industrial applications of microbial lipases. Enzyme Microb Technol 39, 235-251.   DOI   ScienceOn
6 Jaeger, K. E. and Eggert, T. 2004. Enantioselective biocatalysis optimized by directed evolution. Curr Opin Chem Biol 15, 305-313.
7 Ji, Q., Xiao, S., He, B. and Liu, X. 2010. Purification and characterization of an organic solvent-tolerant lipase from Pseudomonas aeruginosa LK1 and its application of biodiesel production. J Mol catal B: Enzyme 66, 264-269.   DOI   ScienceOn
8 Jose, C., Austic, G. B., Bonetto, R. D., Burton, R. M. and Briand, L. E. 2013. Investigation of the stability of $Novozym^{(R)}$ 435 in the production of biodiesel. Catalysis Today 213, 73-80.   DOI   ScienceOn
9 Kwon, D. Y. and Rhee, J. S. 1986. A simple and rapid colorimetric method for determination of free fatty acid for lipase assay. J Am Oil Chem Soc 63, 89-92.   DOI
10 Laane, C. 1987. Medium engineering for bio-organic synthesis. Biocatal Biotransform 1, 17-22.   DOI
11 Magnusson, A. O., Rotticci-Mulder, J. C., Santagostino, A. and Hult, K. 2005. Creating space for large secondary alcohols by rational redesign of Candida antarctica lipase B. Chem Biochem 6, 1051-1056.
12 Ogino, H., Miyamoto, K. and Ishikawa, H. 1994. Organic solvent-tolerant bacterium which secretes an organic solvent-stable lipolytic enzyme. Appl Environ Microbiol 60, 3884- 3886.
13 Ogino, H., Nakagawa, S., Shinya, K., Muto, T., Fujimura, N., Yasudo, N. and Ishikawa, H. 2000. Purification and characterization of organic solvent tolerant lipase from organic solvent tolerant Pseudomonas aeruginosa LST-03. J Biosci Bioeng 89, 451-457.   DOI   ScienceOn
14 Rahman, R. N. Z. R. A., Baharum, S. N., Basri, M. and Salleh, A. B. 2005. High-yield purification of an organic solvent-tolerant lipase from Pseudomonas sp. strain S5. Anal Biochem 341, 267-274.   DOI   ScienceOn
15 Chen, S., Qian, L. and Shi, B. 2007. Purification and properties of enantioselective lipase from a newly isolated Bacillus cereus C71. Process Biochem 42, 988-994.   DOI   ScienceOn
16 Sharma, A. K., Tiwari, R. P. and Hoondal, G. S. 2001. Properties of a thermostable and solvent stable extracellular lipase from a Pseudomonas sp. AG-8. J Basic Microbiol 41, 363-366.   DOI
17 Sulong, M. R., Rahman, R. N. Z., Salleh, A. B. and Basri., M. 2006. A novel organic solvent tolerant lipase from Bacillus sphaericus 205y: Extracellular expression of a novel OST-lipase gene. Pro Exp Puri 49, 190-195.   DOI   ScienceOn
18 Tanaka, D., Yoneda, S., Yamashiro, Y., Sakatoku, A., Kayashima, T., Yamakawa, K. and Nakamura, S. 2012. Characterization of a new cold-adapted lipase from Pseudomonas sp. TK-3. Appl Biochem Biotechnol 168, 327-338.   DOI   ScienceOn
19 Winkler, U. K. and Stuckmann, M. 1979. Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratua marcescens. J Bacteriol 138, 663-670.
20 Yoo, H. Y., Simkhada, J. R., Cho, S. S., Park, D. H., Kim, S. W., Seong, C. N. and Yoo, J. C. 2011. A novel alkaline lipase from Ralstonia with potential application in biodiesel production. Bioresour Technol 102, 6104-6111.   DOI   ScienceOn