Browse > Article
http://dx.doi.org/10.5352/JLS.2012.22.6.778

The Reverse Effect of Salicylic Acid on Cd-induced Growth, Chlorophyll, and Rubisco/Rubisco Activase in Tobacco  

Wang, Yu Shan (Department of Biology, Keimyung University)
Roh, Kwang-Soo (Department of Biology, Keimyung University)
Publication Information
Journal of Life Science / v.22, no.6, 2012 , pp. 778-787 More about this Journal
Abstract
The influence of salicylic acid (SA) on growth, chlorophyll, and rubisco/rubisco activase and effect of denaturator on rubisco/rubisco activase activity were studied in tobacco plants grown in vitro with cadmium (Cd) treatment. In order to find out the optimum concentration of SA, tobacco plants treated with $10^{-6}$ mM - $10^2$ mM of SA were grown in MS medium for 9 weeks, respectively. The most pronounced effect on in vitro growth was found at $10^{-4}$ mM SA. Among the control (not treated with Cd and SA), SA, Cd, and Cd + SA, the growth and content of chlorophyll were in the sequence of Cd < Cd + SA < control < SA, and significantly higher at SA compared with others. Similar results were also observed in the content and activity of rubisco and rubisco activase. These data suggest that inhibitory effect by Cd was reversed by SA. These results also indicate that SA has a positive effect on Cd. The effect of denaturants on rubisco activity showed in the sequence of Cd < Cd + SA < control < SA. Rubisco activity was promoted by L-cysteine and ${\beta}$-mercaptoethanol, not by urea, thiourea, and guanidium-HCl. These data suggest that urea, thiourea, and guanidium-HCl are able to act as denaturator, and L-cysteine and ${\beta}$-mercaptoethanol are not. None of the five denaturants affected the activity of rubisco activase.
Keywords
Cadmium; denaturants; rubisco; rubisco activase; salicylic acid;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Alvarez, M. E. 2000. Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Mol. Biol. 44, 429-442.   DOI
2 Barcelo, J., Vazquez, M. D. and Poschenrieder, C. 1988. Cadmium-induced structural and ultrastructural changes in the vascular system of bush bean stems. Bot. Acta 101, 254-261.   DOI
3 Bodddi, B., Oravecz, A. R. and Lehoczki, E. 1995. Effect of cadminm on organization and photoreduction of protochlorophyllide in dark-grown leaves and etioplast inner membrane preparations of wheat. Photosynthetica 31, 411-420.
4 Borsani, O., Valpuesta, V. and Botella, M. A. 2001. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol. 126, 1024-1030.   DOI   ScienceOn
5 Chandra, A. and Bhatt, R. K. 1998. Biochemical and physiological response to salicylic acid in relation to the systemic acquired resistance. Photosynthetica 35, 255-258.   DOI
6 Chen, Z., Ricigliano, W. and Klessig, D. F. 1993. Purification and charaterization of a soluble salicylic acid-binding protein from tobacco. Proc. Natl. Acad. Sci. USA 90, 9533-9537.   DOI
7 Choudhary, M., Bailey, L. D. and Grant, C. A. 1994. Effect of zinc on cadmium concentration in the tissue of durum wheat. Can. J. Plant Sci. 74, 549-552.   DOI
8 Delaney, T. P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gut-Rella, M., Kessmann, H., Ward, E. and Ryals, J. 1994. A central role of salicylic acid in plant disease resistance. Science 266, 1247-1250.   DOI   ScienceOn
9 Drazic, G. and Mihailovic, N. 2005. Modification of cadmium toxicity in soybean seedlings by salicylic acid. Plant Sci. 168, 511-517.   DOI
10 Eckardt, N. A. and Portis, Jr. A. R. 1997. Heat denaturation profiles of ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco) and rubisco activase and the inability of rubisco activase to restore activity of heat-denaturated rubisco. Plant Physiol. 113, 243-248.
11 Gutierrez-Coronado, M. A., Trejo-Lopez, C. and Larque- Saavedra, A. 1998. Effects of salicylic acid on the growth of roots and shoots in soybean. Plant Physiol. Biochem. 36, 563-565.   DOI   ScienceOn
12 Hong, J. H. and Kim, T. Y. 2007. Effects of salicylic acid on oxidative stress and UV-B tolerance in cucumber leaves. J. Environ. Sci. 16, 1345-1353.   DOI
13 Inskeep, W. P. and Bloom, P. R. 1985. Extinction cofficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone. Plant Physiol. 77, 483-485.   DOI   ScienceOn
14 Kang, H. M. and Saltveit, M. E. 2002. Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiol. Plant 115, 571-576.   DOI
15 Kneer, R. and Zenk, M. H. 1991. Phytochelatins protect plant enzymes from heavy metal poisoning. Phytochemistry 31, 2663-2667.
16 Lee, T. T. and Scoog, F. 1965. Effect of substituted phenols on bud formation and growth of tobacco tissue culture. Physiol. Plant 18, 386-402.   DOI
17 Larsson, E. H., Bornman, J. F. and Hakan, A. 1998. Influence of UV-B radiation and $Cd^{2+}$ on chlorophyII fluorescence, growth and nutrient content in Brassica napus. J. Exp. Bot. 323, 1031-1039.
18 Lee, G. S., Kim, T. Y. and Hong, J. H. 2002. Salicylic acid and water stress effects on growth and proline of cucumber seedlings. J. Environ. Sci. 11, 1165-1172.   DOI
19 Lee, K. R. and Roh, K. S. 2003. Influence of cadmium on rubisco activation in Canavalia ensiformis L. leaves. Biotechnol. Biopro. Bioeng. 8, 94-100.   DOI
20 Metwally, A., Finkemeier, I., Georgi, M. and Dietz, K.-J. 2003. Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol. 132, 272-281.   DOI
21 Mishra, A. and Choudhuri, M. A. 1999. Effects of salicylic acid on heavy metal induce membrane degradation mediated by lipooxygenase in rice. Biol. Plant 42, 409-415.   DOI
22 Munne-Bosch, S., Penuelas, J. and Llusia, J. 2007. A deficiency in salicylic acid alters isoprenoid accumlation in water-stressed NahG transgenic Arabidopsis plants. Plant Sci. 172, 756-762.   DOI
23 Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant 15, 473-497.   DOI
24 Pancheva, T. V., Popova, L. P. and Uzunova, A. N. 1996. Effects of salicylic acid on growth and photosynthesis in barley plants. J. Plant Physiol. 149, 57-63.   DOI
25 Ray, S. D. 1986. GA, ABA, phenolic interaction and control of growth: phenolic compounds as effective modulators of GA-ABA interaction in radish seedlings. Biol. Plant 28, 361-369.   DOI
26 Panković, D., Plesničar, M., Arsenijević-Maksimović, I., Petrović, N., Sakač, Z. and Kastori, R. 2000. Effects of nitrogen nutrition on phosynthesis in Cd-treated sunflower plants. Ann. Botany 86, 841-847.   DOI
27 Racker, E. 1962. Ribulose diphosphate carboxylase from spinach leaves. Methods Enzymol. 5, 266-270.   DOI
28 Raskin, I. 1992. Role of salicylic acid in plants. Ann. Rev. Plant Physiol. Mol. Biol. 43, 439-463.   DOI   ScienceOn
29 Reese, E. N. and Roberts, L. W. 1984. Cadmium uptake and its effects on growth of tobacco cell suspension cultures. Plant Cell Rep. 3, 91-94.   DOI
30 Robinson, S. P. and Portis, A. R. Jr. 1989. Adenosine triphosphate hydrolysis by purified rubisco activase. Arch. Biochem. Biophys. 268, 93-99.   DOI   ScienceOn
31 Roh, K. S. and Chin, H. S. 2005. Cadmium toxicity and calcium effect on growth and photosynthesis of tobacco. J. Life Sci. 15, 453-460.   DOI
32 Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. 1996. Systemic acquired resistance. Plant Cell 8, 1809-1819.   DOI
33 Shakirova, F. M., Sakhabutdinova, A. R., Bezrukova, M. V., Fatkhutdinova, R. A. and Fatkhutdinova, D. R. 2003. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci. 164, 317-322.   DOI   ScienceOn
34 Shin, D. H., Yu, S. R. and Choi, K. S. 1995. Effect of salicylic acid on anthocyanin synthesis in cell suspension cultures of Vitis vinifera L. Kor. J. Plant Tissue Culture 22, 59-64.
35 Stobart, A. K., Griffiths, W. T., Ameen-Bukhari, I. and Sherwood, R. P. 1985. The effect of $Cd^{2+}$on the biosynthesis of chlorophyll in leaves of barley. Physiol. Plant. 63, 293-298.   DOI
36 Somashekaraiah, B. V., Padmaja, K. and Praead, A. R. K. 1992. Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgarts): involvement of lipid peroxides in chlorophyill degradation. Physiol. Plant 85, 85-89.   DOI
37 Srivastava, M. K. and Dwivedi, U. N. 2000. Delayed ripening of banana fruit by salicylic acid. Plant Sci. 158, 87-96.   DOI
38 Stiborova, M. 1988. $Cd^{2+}$ ions affect the quaternary structure of ribulose- 1,5-bisphoshate carboxylase from barley leaves. Biochemia Physiol. Planzen 183, 371-378.
39 Vahala, J., Keinanen, M., Schutzendubel, A., Polle, A. and Kangasjarvi, J. 2003. Differential effects of elevated ozone on two hybrid aspen genotypes predisposed to chronic ozone fumigation. Role of ethylene and salicylic acid. Plant Physiol. 132, 196-205.   DOI
40 Vogelli-Large, R. and Wagner, G. J. 1990. Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves. Plant Physiol. 92, 1086-1093.   DOI   ScienceOn
41 Wang, D., Karolina, P.-M., Angela, H. C. and Dong, X. 2007. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Current Biology 17, 1784-1790.   DOI
42 Wang, Z. Y. and Portis, Jr. A. R. 1992. Dissociation of ribulose 1,5-bisphosphate bound to ribulose 1,5-bisphosphate carboxylase/oxygenase and its enhancement by ribulose 1,5-bisphosphate carboxylase/oxygenase activase-mediated hydrolysis of ATP. Plant Physiol. 99, 1348-1353.   DOI