Browse > Article
http://dx.doi.org/10.5352/JLS.2012.22.5.665

Regular Endurance Exercise Decreases Blood Pressure via Enhancement of Angiogenesis and VEGF Expression in Spontaneously Hypertensive Rats  

Li, Wei (Department of Sports Science, Chungnam National University)
Park, Hee-Geun (Department of Sports Science, Chungnam National University)
Lee, Young-Ran (Department of Sports Science, Chungnam National University)
Jang, Hak-Young (Department of Sports Science, Chungnam National University)
Choo, Sung-Ho (Department of Sports Science, Chungnam National University)
Lee, Young-Hwa (Department of Sports Science, Chungnam National University)
Gan, Li (Department of Sports Science, Chungnam National University)
Jun, Jong-Kui (Department of Sports Science, Chungnam National University)
Lee, Wang-Lok (Department of Sports Science, Chungnam National University)
Lee, Sang-Ki (Department of Sports Science, Chungnam National University)
Publication Information
Journal of Life Science / v.22, no.5, 2012 , pp. 665-670 More about this Journal
Abstract
This study investigated the effect of endurance exercises on blood pressure, angiogenesis, and the vascular endothelial growth factor (VEGF) expression in the skeletal muscle of spontaneously hypertensive rats (SHR). Five week old SHRs and Wistar-Kyoto rats (WKY) were randomly divided into 3 groups: Wistar-Kyoto rats (WKY, n=9), SHR control (SHR-C, n=9), and SHR endurance exercise training (SHR-E, n=9). Endurance exercise training was performed on a treadmill (12-20 m/min, 0% grade, 60 min/day, 5 days/week, 16 weeks). Systolic blood pressure was monitored with the tail-cuff method. The expression of VEGF protein and capillary density were identified using western blotting and H&E staining in the soleus muscle, respectively. Systolic blood pressure was reduced by endurance exercise in SHR ($p$ <0.05). The capillary density of skeletal muscles in SHR-C was lower than in WKY ($p$ <0.05), but it was recovered by endurance exercise training (SHR-E) compared to SHR-C ($p$ <0.05), and VEGF protein was also increased by endurance exercise training compared to SHR-C ($p$ <0.05). These data suggest that the enhancement of capillary density via an increase of VEGF expression in skeletal muscles by endurance exercise training could be an important factor to inhibit blood pressure elevation in SHR.
Keywords
Endurance exercise; hypertension; VEGF; skeletal muscle; capillary density;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bedford, T. G., Tipton, C. M., Wilson, N. C., Oppliger, R. A. and Gisolfi, C. V. 1979. Maximum oxygen consumption of rats and its changes with various experimental procedures. J. Appl. Physiol. 47, 1278-1283.
2 Belabbas, H., Zalvidea, S., Casellas, D., Moles, J. P., Galbes, O., Mercier, J. and Jover, B. 2008. Contrasting effect of exercise and angiotensin II hypertension on in vivo and in vitro cardiac angiogenesis in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R1512-R1518.   DOI
3 Berg, B. R., Cohen, K. D. and Sarelius, I. H. 1997. Direct coupling between blood flow and metabolism at the capillary level in striated muscle. Am. J. Physiol. 272, H2693-H2700.
4 Birot, O. J. G., Koulmann, N., Peinnequin, A. and Bigard, X. A. 2003. Exercise-induced expression of vascular endothelial growth factor mRNA in rat skeletal muscle is dependent on fibre type. J. Physiol. 552, 213-221.   DOI
5 Breen, E. C., Johnson, E. C., Wagner, H., Tseng, H. M., Sung, L. A. and Wagner, P. D. 1996. Angiogenic growth factor mRNA responses in muscle to a single bout of exercise. J. Appl. Physiol. 81, 355-361.
6 Brown, M. D. and Hudlicka, O. 2003. Modulation of physiological angiogenesis in skeletal muscle by mechanical forces: involvement of VEGF and metalloproteinases. Angiogenesis 6, 1-14.   DOI   ScienceOn
7 Chen, H. I. and Chiang, I. P. 1996. Chronic exercise decreases adrenergic agonist-induced vasoconstriction in spontaneously hypertensive rats. Am. J. Physiol. 271, H977-H983.
8 Chobanian, A. V., Bakris, G. L., Black, H. R., Cushman, W. C., Green, L. A., Izzo, J. L., Jones, D. W., Materson, B. J., Oparil, S., Wright, J. T. and Roccella, E. J.; National High Blood Pressure Educ, P. 2003. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure - The JNC 7 report. JAMA. 289, 2560-2572.   DOI   ScienceOn
9 Ferrara, N. and DavisSmyth, T. 1997. The biology of vascular endothelial growth factor. Endcr. Rev. 18, 4-25.   DOI   ScienceOn
10 Gavin, T. P. and Wagner, P. D. 2001. Effect of short-term exercise training on angiogenic growth factor gene responses in rats. J. Appl. Physiol. 90, 1219-1226.
11 Gustafsson, T., Bodin, K., Sylven, C., Gordon, A., Tyni-Lenne, R. and Jansson, E. 2001. Increased expression of VEGF following exercise training in patients with heart failure. Eur. J. Clin. Invest. 31, 362-366.   DOI
12 Greene, A. S., Lombard, J. H., Cowley, A. W. and Hansensmith, F. M. 1990. Microvessel changes in hypertension measured by Griffonia simplicifolia I-lectin. Hypertension. 15, 779-783.   DOI
13 Hansen, A. H., Nielsen, J. J., Saltin, B. and Hellsten, Y. 2010. Exercise training normalizes skeletal muscle vascular endothelial growth factor levels in patients with essential hypertension. J. Hypertens. 28, 1176-1185.
14 Hernandez, N., Torres, S. H., Finol, H. J. and Vera, O. 1999. Capillary changes in skeletal muscle of patients with essential hypertension. Anat. Res. 256, 425-432.   DOI
15 Hudlicka, O., Brown, M. and Egginton, S. 1992. Angiogenesis in skeletal and cardiac muscle. Physiol. Res. 72, 369-417.
16 Hudlicka, O. and Brown, M. D. 2009. Adaptation of Skeletal muscle microvasculature to increased or decreased blood flow: role of shear stress, nitric oxide and vascular endothelial growth factor. J. Vasc. Res. 46, 504-512.   DOI
17 Kiefer, F. N., Neysari, S., Humar, R., Li, W., Munk, V. C. and Battegay, E. J. 2003. Hypertension and angiogenesis. Curr. Pham. Des. 9, 1733-1744.   DOI
18 Lee, S. K., Kim, C. S., Kim, H. S., Cho, E. J., Joo, H. K., Lee, J. Y., Lee, E. J., Park, J. B. and Jeon, B. H. 2009. Endothelial nitric oxide synthase activation contributes to post-exercise hypotension in spontaneously hypertensive rats. Biochem. Biophys. Res. Commun. 382, 711-714.   DOI
19 Kingwell, B. A. 2000. Nitric oxide-mediated metabolic regulation during exercise: effects of training in health and cardiovascular disease. FASEB. J. 14, 1685-1696.   DOI
20 Kokkinos, P. F., Giannelou, A., Manolis, A. and Pittaras, A. 2009. Physical activity in the prevention and management of high blood pressure. Hellenic. J. Cardiol. 50, 52-59.
21 Leung, D. W., Cachianes, G., Kuang, W. J., Goeddel, D. V. and Ferrara, N. 1989. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306-1309.   DOI
22 MacMahon, S., Peto, R., Cutler, J., Collins, R., Sorlie, P., Neaton, J., Abbott, R., Godwin, J., Dyer, A. and Stamler, J. 1990. Blood pressure, stroke, and coronary heart disease. Part 1, Prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet 335, 765-774.   DOI   ScienceOn
23 Milkiewicz, M., Brown, M. D., Egginton, S. and Hudlicka, O. 2001. Association between shear stress, angiogenesis, and VEGF in skeletal muscles in vivo. Microcirculation 8, 229-241.   DOI
24 Neufeld, G., Cohen, T., Gengrinovitch, S. and Poltorak, Z. 1999. Vascular endothelial growth factor (VEGF) and its receptors. FASEB. J. 13, 9-22.
25 Noon, J. P., Walker, B. R., Webb, D. J., Shore, A. C., Holton, D. W., Edwards, H. V. and Watt, G. C. M. 1997. Impaired microvascular dilatation and capillary rarefaction in young adults with a predisposition to high blood pressure. J. Clin. Invest. 99, 1873-1879.   DOI
26 Stamler, J., Stamler, R. and Neaton, J. D. 1993. Blood pressure, systolic and diastolic, and cardiovascular risks. united states population data. Arch. Intern. Med. 153, 598-615.   DOI
27 Olfert, I. M., Breen, E. C., Mathieu-Costello, O. and Wagner, P. D. 2001. Chronic hypoxia attenuates resting and exercise- induced VEGF, fit-1, and flk-1 mRNA levels in skeletal muscle. J. Appl. Physiol. 90, 1532-1538.
28 Pajusola, K., Kunnapuu, J., Vuorikoski, S., Soronen, J., André, H., Pereira, T., Korpisalo, P., Yla-Herttuala, S., Poellinger, L. and Alitalo, K. 2005. Stabilized HIF-1alpha is superior to VEGF for angiogenesis in skeletal muscle via adeno-associated virus gene transfer. FASEB. J. 19, 1365-1367.
29 Schmidt-Trucksass, A., Sandrock, M., Cheng, D. C., Muller, H. M., Baumstark, M. W., Rauramaa, R., Berg, A. and Huonker, M. 2003. Quantitative measurement of carotid intima-media roughness - effect of age and manifest coronary artery disease. Atherosclerosis 166, 57-65.   DOI
30 Tang, K., Breen, E. C., Gerber, H. P., Ferrara, N. M. A. and Wagner, P. D. 2004. Capillary regression in vascular endothelial growth factor-deficient skeletal muscle. Physiol. Genomics 18, 63-69.   DOI
31 Vasan, R. S., Larson, M. G., Leip, E. P., Kannel, W. B. and Levy, D. 2001. Assessment of frequency of progression to hypertension in nonhypertensive participants in the framingham heart study: a cohort study. Lancet 358, 1682-1686.   DOI   ScienceOn
32 Vilar, J., Waeckel, L., Bonnin, P., Cochain, C., Loinard, C., Duriez, M., Silvestre, J. S. and Levy, B. I. 2008. Chronic hypoxia-induced angiogenesis normalizes blood pressure in spontaneously hypertensive rats. Circ. Res. 103, 761-769.   DOI
33 Yen, M. H., Yang, J. H., Sheu, J. R., Lee, Y. M. and Ding, Y. A. 1995. Chronic exercise enhances endothelium mediated dilation in spontaneously hypertensive rats. Life Sci. 57, 2205-2213.   DOI
34 Amaral, S. L., Sanchez, L. S., Chang, A., Rossoni, L. V. and Michelini, L. C. 2008. Time course of training-induced microcirculatory changes and of VEGF expression in skeletal muscles of spontaneously hypertensive female rats. Braz. J. Med. Biol. Res. 41, 424-431.
35 Amaral, S. L., Zorn, T. M. T. and Michelini, L. C. 2000. Exercise training normalizes wall-to-lumen ratio of the gracilis muscle arterioles and reduces pressure in spontaneously hypertensive rats. J. Hypertens. 18, 1563-1572.   DOI