Browse > Article
http://dx.doi.org/10.5352/JLS.2012.22.4.486

Effects of Myostatin Prodomains on the Reproduction of Rotifer Brachionus rotundiformis  

Jo, Mi-Jin (Department of Marine Molecular Biotechnology, Gangneung-Wonju National University)
Jin, Hyung-Joo (Department of Marine Molecular Biotechnology, Gangneung-Wonju National University)
Publication Information
Journal of Life Science / v.22, no.4, 2012 , pp. 486-491 More about this Journal
Abstract
Myostatin (MSTN), a member of the transforming growth factor (TGF)-beta family, is a potent negative regulator of skeletal muscle growth and maintenance. The MSTN prodomain inhibits MSTN biological activity. The rotifer Brachionus rotundiformis is an excellent primary live feed for fish larvae in aquaculture; however, it is not known whether the rotifer expresses MSTN and the MSTN prodomain along with its activity. The objective of this study was to examine the effects of recombinant MSTN prodomains. Individual cultures of the rotifer B. rotundiformis were carried out to determine the effect of recombinant MSTN prodomains (pMALc2x-poMSTNpro and pMALc2x-sMSTNpro) on the pre-reproductive phase, reproductive phase, post-reproductive phase, offspring, lifespan, fecundity, and male ratio. In addition, a population culture of the rotifer was performed to confirm the effects of pMALc2x-poMSTNpro and pMALc2x-sMSTNpro on population growth. The results showed that the rotifer treated with pMALc2x-pMSTNpro had a reduced pre-reproductive phase at higher concentrations (1, 2, and 4 ${\mu}g/ml$) compared to the non-treated control group. Moreover, the pMALc2xsMSTNpro treated rotifer effectively decreased the pre-reproductive phase at a lower concentration (0.25 ${\mu}g/ml$) compared to the pMALc2x-pMSTNpro treated and control group. Interestingly, pMALc2x-poMSTNpro and pMALc2x-sMSTNpro significantly increased the population of $B.$ $rotundiformis$.
Keywords
Myostatin; myostatin prodomain; rotifer; $B.$ $rotundiformis$; reproduction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wolfman, N. M., McPherron, A. C., Pappano, W. N., Davies, M. V., Song, K., Tomkinson, K. N., Wright, J. F., Zhao, L., Sebald, S. M., Greenspan, D. S. and Lee, S. J. 2003. Activation of latent myostatin by the BMP-1/tolloid family of metalloproteinases. Proc. Natl. Acad. Sci. USA 100, 15842-15846.   DOI   ScienceOn
2 Xu, C., Wu, G., Zohar, Y. and Du, S. J. 2003. Analysis of myostatin gene structure, expression and function in zebrafish. J. Exp. Biol. 206, 4067-4079.   DOI   ScienceOn
3 Yang, J., Ratovitski, T., Brady, J. P., Solomon, M. B., Wells, K. D. and Wall, R. J. 2001. Expression of myostatin pro domain results in muscular transgenic mice. Mol. Reprod. Dev. 60, 351-361.   DOI   ScienceOn
4 Yoshimatsu, T., Higuchi, T., Zhang, D., Fortes, V. R., Tanaka, K. and Yoshimura, K. 2006. Effect of dietary cobalt supplementation on the population growth of rotifer Brachionus rotundiformis. Fish Sci. 72, 214-216.   DOI   ScienceOn
5 Zhu, X., Hadhazy, M., Wehling, M., Tidball, J. G. and McNally, E. M. 2000. Dominant negative myostatin produces hypertrophy without hyperplasia in muscle. FEBS Lett. 474, 71-75.   DOI   ScienceOn
6 Rodgers, B. D. and Weber, G. M. 2001. Sequence conservation among fish myostatin orthologues and the characterization of two additional cDNA clones from Morone saxatilis and Morone americana. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 129, 597-603.   DOI
7 Schuelke, M., Wagner, K. R., Stolz, L. E., Hubner, C., Riebel, T., Komen, W., Braun, T., Tobin, J. F. and Lee, S. J. 2004. Myostatin mutation associated with gross muscle hypertrophy in a child. N. Engl. J. Med. 350, 2682-2688.   DOI   ScienceOn
8 Smith, J. A., Lewis, A. M., Wiener, P. and Williams, J. L. 2000. Genetic variation in the bovine myostatin gene in UK beef cattle: allele frequencies and haplotype analysis in the South Devon. Anim. Genet. 31, 306-309.   DOI   ScienceOn
9 Snell, T. W., Kubanek, J. M., Carter, W. E., Payne, A. B., Kim, J., Hicks, M. and Stelzer, C. P. 2006. A protein signal triggers sexual reproduction in Brachionus plicatilis (Rotifera). Marine Biol. 149, 763-773.   DOI   ScienceOn
10 Szabo, G., Dallmann, G., Muller, G., Patthy, L., Soller, M. and Varga, L. 1998. A deletion in the myostatin gene causes the compact (Cmpt) hypermuscular mutation in mice. Mamm. Genome 9, 671-672.   DOI   ScienceOn
11 Terova, G., Bernardini, G., Binelli, G., Gornati, R. and Saroglia, M. 2006. cDNA encoding sequences for myostatin and FGF6 in sea bass (Dicentrarchus labrax, L.) and the effect of fasting and refeeding on their abundance levels. Domest. Anim. Endocrinol. 30, 304-319.   DOI   ScienceOn
12 Lee, S. B., Cho, M. J., Kim, J. H., Kim, Y. S. and Jin, H. J. 2011. Production of Bioactive Rockfish (Sebastes schlegeli) Myostatin-1 Prodomain in an Escherichia coli system. Protein J. 30, 52-58.   DOI   ScienceOn
13 Thies, R. S., Chen, T., Davies, M. V., Tomkinson, K. N., Pearson, A. A., Shakey, Q. A. and Wolfman, N. M. 2001. GDF-8 propeptide binds to GDF-8 and antagonizes biological activity by inhibiting GDF-8 receptor binding. Growth Factors 18, 251-259.   DOI   ScienceOn
14 Thomas, M., Langley, B., Berry, C., Sharma, M., Kirk, S., Bass, J. and Kambadur, R. 2000. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J. Biol. Chem. 275, 40235-40243.   DOI   ScienceOn
15 Lee, S. B., Kim, Y. S., Oh, M. Y., Jeong, I. H., Seong, K. B. and Jin, H. J. 2010. Improving rainbow trout (Oncorhynchus mykiss) growth by treatment with a fish (Paralichthys olivaceus) myostatin prodomain expressed in soluble forms in E. coli. Aquaculture 302, 270-278.   DOI
16 Lee, S. J. and McPherron, A. C. 2001. Regulation of myostatin activity and muscle growth. Proc. Natl. Acad. Sci. USA 98, 9306-9311.   DOI   ScienceOn
17 Maccatrozzo, L., Bargelloni, L., Radaelli, G., Mascarello, F. and Patarnello, T. 2001. Characterization of the myostatin gene in the gilthead seabream (Sparus aurata): sequence, genomic structure, and expression pattern. Mar. Biotechnol. 3, 224-230.   DOI   ScienceOn
18 McPherron, A. C., Lawler, A. M. and Lee, S. J. 1997. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387, 83-90.   DOI   ScienceOn
19 McPherron, A. C. and Lee, S. J. 1997. Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. USA 94, 12457-12461.   DOI   ScienceOn
20 Mosher, D. S., Quignon, P., Bustamante, C. D., Sutter, N. B., Mellersh, C. S., Parker, H. G. and Ostrander, E. A. 2007. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet. 3, e79.   DOI
21 Gallardo, W. G., Hagiwara, A. and Snell, T. W. 2000. Effect of juvenile hormone and serotonin (5 HT) on mixis induction of the rotifer Brachionus plicatilis Muller. J. Exp. Mar. Biol. Ecol. 252, 97-107.   DOI   ScienceOn
22 Preston, B. L. and Snell, T. W. 2001. Direct and indirect effects of sublethal toxicant exposure on population dynamics of freshwater rotifers: a modeling approach. Aquat. Toxicol. 52, 87-99.   DOI   ScienceOn
23 Rodgers, B. D., Roalson, E. H., Weber, G.. M., Roberts, S. B. and Goetz, F. W. 2007. A proposed nomenclature consensus for the myostatin gene family. Am. J. Physiol. Endocrinol. Metab. 292, E371-E372.
24 Gallardo, W. G., Hagiwara, A., Hara, K., Soyano, K. and Snell, T. W. 2000. GABA, 5-HT and other amino acids in the rotifers Brachionus Plicatilis and B. Rotundiformis. Comp. Biochem. Physiol. 127A, 301-307.
25 Gallardo, W. G., Hagiwara, A. and Snell, T. W. 2000. GABA enhances rotifer reproduction of the rotifer Brachionus plicatilis Muller: application to mass culture. Aquacult. Res. 31, 713-718.   DOI   ScienceOn
26 Gallardo, W. G., Hagiwara, A. and Snell, T. W. 2001. Use of GABA to enhance rotifer reproduction in enrichment culture. Aquac. Res. 32, 243-246.   DOI   ScienceOn
27 Halbach, U., Siebert, M., Westermayer, M. and Wissel, C. 1983. Population ecology of rotifers as a bioassay tool for ecotoxicological tests in aquatic environments. Ecotoxicol. Environ. Saf. 7, 484-513.   DOI   ScienceOn
28 Hill, J. J., Davies, M. V., Pearson, A. A., Wang, J. H., Hewick, R. M., Wolfman, N. M. and Qiu, Y. 2002. The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum. J. Biol. Chem. 277, 40735-40741.   DOI
29 Kambadur, R., Sharma, M., Smith, T. P. and Bass, J. J. 1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 7, 910-916.
30 Kerr, T., Roalson, E. H. and Rodgers, B. D. 2005. Phylogenetic analysis of the myostatin gene sub-family and the differential expression of a novel member in zebrafish. Evol. Dev. 7, 390-400.   DOI   ScienceOn
31 Kubanek, J. and Snell, T. W. 2008. Quorum sensing in rotifers, pp. 453-461, In Winans, S. C. and Bassler, B. L. (eds.), Chemical communication among Bacteria, ASM Press, Washington, DC, USA.
32 Acosta, J., Morales, R., Morales, A., Alonso, M. and Estrada, M. P. 2007. Pichia pastoris expressing recombinant tilapia growth hormone accelerates the growth of tilapia. Biotechnol. Lett. 29, 1671-1676.   DOI   ScienceOn
33 Alver, M. O. and Hagiwara, A. 2007. An individual-based population model for the prediction of rotifer population dynamics and resting egg production. Hydrobiologia 593, 19-26.   DOI   ScienceOn
34 Amali, A. A., Lin, C. J., Chen, Y. H., Wang, W. L. Gong, H. Y., Lee, C. Y., Ko, Y. L., Lu, J. K., Her, G. M., Chen, T. T. and Wu, J. L. 2004. Up-regulation of muscle-specific transcription factors during embryonic somitogenesis of zebrafish (Danio rerio) by knock-down of myostatin-1. Dev. Dyn. 229, 847-856.   DOI   ScienceOn
35 Clement, P., Wurdak, E. and Amsellem, J. 1983. Behaviour and ultrastructure of sensory organs in rotifers. Hydrobiologia 104, 89-130.   DOI   ScienceOn
36 Gallardo, W. G., Hagiwara, A., Tomita, Y., Soyano, K. and Snell, T. W. 1997. Effect of some vertebrate and invertebrate hormones on the population growth, mictic female production, and body size of the marine rotifer Brachionus plicatilis Muller. Hydrobiologia 358, 113-120.   DOI
37 Clop, A., Marcq, F., Takeda, H., Pirottin, D., Tordoir, X., Bibe, B., Bouix, J., Caiment, F., Elsen, J. M., Eychenne, F., Larzul, C., Laville, E., Meish, F., Milenkovic, D., Tobin, J., Charlier, C. and Georges, M. 2006. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet. 38, 813-818.   DOI   ScienceOn