Browse > Article
http://dx.doi.org/10.5352/JLS.2011.21.5.693

Inhibitory Effect of Spermidine with Antioxidant Activity on Oxidative Stress in Human Dermal Fibroblasts  

Park, In-Hwan (Department of Chemistry, Dong-Eui University)
Kim, Moon-Moo (Department of Chemistry, Dong-Eui University)
Publication Information
Journal of Life Science / v.21, no.5, 2011 , pp. 693-699 More about this Journal
Abstract
Spermidine is a ubiquitous polycation that is synthesized from putrescine, which serves as a precursor of spermine. In recent years, spermidine was found to be a polyamine that plays an important role in longevity. Reactive oxygen species (ROS) such as hydroxyl radical, superoxide and hydrogen peroxide have been shown to be involved in various pathogenic processes as well as aging. The direct scavenging effect of spermidine on DPPH radical, $H_2O_2$ and hydroxyl radical, and its protective effect against DNA oxidation related to oxidative stress were evaluated in vitro. It was observed that spermidine exhibits scavenging activities on DPPH radical and H2O2 above 500 ${\mu}M$. Spermidine was especially effective in exerting a scavenging activity on hydroxyl radical. In addition, spermidine at 1000 ${\mu}M$ showed a clear protective effect against DNA oxidation. Furthermore, the expression level of anti-oxidant enzymes such as superoxide dismutase in humam dermal fibroblasts increased in the presence of spermidine compared with blank group. These results suggest that spermidine can be used as an antioxidant to prevent ROS-related diseases including inflammation, cancer and aging.
Keywords
Spermidine; superoxide dismutase; reactive oxygen species (ROS); human dermal fibroblast;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Reddy, A. and B. Lokesh. 1994. Studies on the inhibitory effects of curcumin and eugenol on the formation of reactive oxygen species and the oxidation of ferrous iron. Mol. Cell Biochem. 137, 1-8.   DOI
2 Rider, J., A. Hacker, C. Mackintosh, A. Pegg, P. Woster, and R. Casero. 2007. Spermine and spermidine mediate protection against oxidative damage caused by hydrogen peroxide. Amino Acids 33, 231-240.   DOI
3 Sambrook, J., E. Fritsch, and T. Maniatis. 1989. Molecular cloning: A laboratory manual. pp. 1-344, 3th eds., Cold Spring Harbor Laboratory Press. New York.
4 Valko, M., D. Leibfritz, J. Moncol, M. Cronin, M. Mazur, and J. Telser. 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39, 44-84.   DOI
5 Yang, Y. H., Y. J. Kim, and H. Y. Chung. 2001. Peroxynitrite and hydroxyl radical scavenging activity of dihydroxybenzaldehydes. Korean J. Gerontol. 11, 24-28.
6 Yoshiki, Y., M. Kinumi, T. Kahara, and K. Okubo. 1996. Chemiluminescence of soybean saponins in the presence of active oxygen species. Plant Sci. 116, 125-129.   DOI
7 Zhao, H. and H. Yang. 2008. Exogenous polyamines alleviate the lipid peroxidation induced by cadmium chloride stress in Malus hupehensis Rehd. Sci. Hortic-Amsterdam. 116, 442-447.   DOI
8 Lightfoot, T., C. Skibola, A. Smith, M. Forrest, P. Adamson, G. Morgan, P. Bracci, E. Roman, M. Smith, and E. Holly. 2006. Polymorphisms in the oxidative stress genes, superoxide dismutase, glutathione peroxidase and catalase and risk of non-Hodgkin's lymphoma. Haematologica. 91, 1222-12227.
9 Looi, M., A. Mohd Dali, S. Md Ali, W. Wan Ngah, and Y. Mohd Yusof. 2008. Oxidative damage and antioxidant status in patients with cervical intraepithelial neoplasia and carcinoma of the cervix. Eur. J. Cancer Prev. 17, 555-560.   DOI
10 Manian, R., N. Anusuya, P. Siddhuraju, and S. Manian. 2008. The antioxidant activity and free radical scavenging potential of two different solvent extracts of Camellia sinensis (L.) O. Kuntz, Ficus bengalensis L. and Ficus racemosa L. Food Chem. 107, 1000-1007.   DOI
11 Mozdzan, M., J. Szemraj, J. Rysz, R. Stolarek, and D. Nowak. 2006. Anti-oxidant activity of spermine and spermidine re-evaluated with oxidizing systems involving iron and copper ions. Int. J. Biochem. Cell Biol. 38, 69-81.   DOI
12 Medic-Saric, M., V. Rastija, M. Boji, and Z. Male. 2009. From functional food to medicinal product: Systematic approach in analysis of polyphenolics from propolis and wine. Nutr. J. 8, 33.
13 Milne, L., P. Nicotera, S. Orrenius, and M. Burkitt. 1993. Effects of glutathione and chelating agents on copper-mediated DNA oxidation: pro-oxidant and antioxidant properties of glutathione. Arch. Biochem. Biophys. 304, 102-109.   DOI
14 Moinard, C., L. Cynober, and J. de Bandt 2005. Polyamines: metabolism and implications in human diseases. Clin. Nutr. 24, 184-197.   DOI
15 Ohnishi, N. and T. Yokoyama. 2004. Interactions between medicines and functional foods or dietary supplements. Keio. J. Med. 53, 137-150.   DOI
16 Oyaizu, M. 1986. Studies on products of the browning reaction. Antioxidative activities of browning reaction products prepared from glucosamine. Jpn. J. Nutr. 44, 307-315.   DOI
17 Hasani-Ranjbar, S., B. Larijani, and M. Abdollahi. 2009. A systematic review of the potential herbal sources of future drugs effective in oxidant-related diseases. Inflamm Allergy Drug Targets 8, 2-10.   DOI
18 Imai, J., N. Ide, S. Nagae, T. Moriguchi, H. Matsuura, and Y. Itakura. 1994. Antioxidant and radical scavenging effects of aged garlic extract and its constituents. Planta Med. 60, 417-420.   DOI
19 Jang, M., L. Cai, G. Udeani, K. Slowing, C. Thomas, C. Beecher, H. Fong, N. Farnsworth, A. Kinghorn, and R. Mehta. 1997. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275, 218-220.   DOI
20 Khan, A., P. Di Mascio, M. Medeiros, and T. Wilson. 1992. Spermine and spermidine protection of plasmid DNA against single-strand breaks induced by singlet oxygen. Proc. Natl. Acad. Sci. USA 89, 11428-11430.   DOI
21 Kitada, M., Y. Naito, K. Igarashi, S. Hirose, Y. Kanakubo, and H. Kitagawa. 1981. Possible mechanism of inhibition by polyamines of lipid peroxidation in rat liver microsomes. Res. Commun. Chem. Pathol. Pharmacol. 33, 487-497.
22 Krishna, M., W. DeGraff, O. Hankovszky, C. Sar, T. Kalai, J. Jeko, A. Russo, J. Mitchell, and K. Hideg. 1998. Studies of structure- activity relationship of nitroxide free radicals and their precursors as modifiers against oxidative damage. J. Med. Chem. 41, 3477-3492.   DOI
23 Kwon, G. J., D. S. Choi, and M. H. Wang. 2007. Biological activities of hot water extracts from euonymus alatus leaf. Korean J. Food Sci. Technol. 39, 569-574.
24 Lovaas, E. 1995. Hypothesis: spermine may be an important epidermal antioxidant. Medical Hypotheses 45, 59-67.   DOI
25 Li, H., S. Yashiki, J. Sonoda, H. Lou, S. Ghosh, J. Byrnes, C. Lema, T. Fujiyoshi, M. Karasuyama, and S. Sonoda. 2000. Green tea polyphenols induce apoptosis in vitro in peripheral blood T lymphocytes of adult T-cell leukemia patients. Cancer Sci. 91, 34-40.   DOI
26 Cuevas, J., R. Lopez-Cobollo, R. Alcazar, X. Zarza, C. Koncz, T. Altabella, J. Salinas, A. Tiburcio, and A. Ferrando. 2008. Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiol. 148, 1094-1105.   DOI
27 Davies, P. 2010. The plant hormones: their nature, occurrence, and functions. Plant Hormones A, 1-15.
28 Feuerstein, B. and L. Marton. 1989. Specificity and binding in polyamine/nucleic acid interactions. pp. 109-124, In Bachrach, U. and Y. M. Heimer (eds.), The Physiology of Polyamines, CRC Press, Boca Raton, Florida.
29 Duan, J., J. Li, S. Guo, and Y. Kang. 2008. Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. J. Plant Physiol. 165, 1620-1635.   DOI   ScienceOn
30 Eisenberg, T., H. Knauer, A. Schauer, S. Buttner, C. Ruckenstuhl, D. Carmona-Gutierrez, J. Ring, S. Schroeder, C. Magnes, and L. Antonacci. 2009. Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 11, 1305-1314.   DOI
31 Galston, A. 2001. Plant biology-Retrospect and prospect. Curr. Sci. 80, 143-152.
32 Groppa, M., M. Benavides, and M. Tomaro. 2003. Polyamine metabolism in sunflower and wheat leaf discs under cadmium or copper stress. Plant Sci. 164, 293-299.   DOI
33 Ha, H., N. Sirisoma, P. Kuppusamy, J. Zweier, P. Woster, and R. Casero. 1998. The natural polyamine spermine functions directly as a free radical scavenger. Proc. Natl. Acad. Sci. USA 95, 11140-11145.   DOI
34 Hansen, M., S. Nielsen, and K. Berg. 1989. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods 119, 203-210.   DOI
35 Harman, D. 1956. A theory based on free radical and radiation chemistry. J. Gerontol. 11, 298-300.   DOI   ScienceOn
36 Choi, C. S., E. S. Song, J. S. Kim, and M. H. Kang. 2003. Antioxidative activities of Castanea crenata Flos. methanol extracts. Korean J. Food Sci. Technol. 35, 1216-1220.
37 Bouchereau, A., A. Aziz, F, Larher, and J. Martin-Tanguy. 1999. Polyamines and environmental challenges: recent development. Plant Sci. 140, 103-125.   DOI
38 Branen, A. 1975. Toxicology and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J. Am. Oil. Chem Soc. 52, 59-63.   DOI
39 Choi, C. W., S. C. Kim, S. S. Hwang, B. K. Choi, H. J. Ahn, M. Y. Lee, S. H. Park, and S. K. Kim. 2002. Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Sci. 163, 1161-1168.   DOI