Browse > Article
http://dx.doi.org/10.5352/JLS.2011.21.3.473

Adenylyl Cyclases in Mycobacteria  

Jeon, Han-Seung (Department of Microbiology, Pusan National University)
Ko, In-Jeong (Korea Science Academy of KAIST)
Oh, Jeong-Il (Department of Microbiology, Pusan National University)
Publication Information
Journal of Life Science / v.21, no.3, 2011 , pp. 473-479 More about this Journal
Abstract
Adenylyl cyclase (AC) catalyzes the formation of cyclic AMP (cAMP) from ATP. The cAMP produced by AC serves as a secondary messenger in a variety of signal transduction pathways, and controls various cellular functions in many organisms. ACs can be grouped into six classes based on their primary amino acid sequences. Eukaryotes and mycobacteria contain only members of class III AC. The catalytic cyclase domains of class III AC are active as dimers: mammalian ACs, which are composed of a single polypeptide with two catalytic cyclase domains, form the active site as a result of intramolecular dimerization of the catalytic cyclase domains. In contrast, mycobacterial ACs function as homodimers, since their polypeptides contain a single catalytic cyclase domain. Six amino acids are required for the catalytic activity of class III AC - two aspartate residues, a lysine-aspartate pair and an arginine-asparagine pair. 16 ACs belonging to the class III were identified in Mycobacterium tuberculosis H37Rv, and their characteristics are reviewed.
Keywords
Adenylyl cyclase; cAMP; Mycobacterium tuberculosis; secondary messenger; signal transduction pathway;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shenoy, A. R., A. Srinivas, M. Mahalingam, and S. S. Visweswariah. 2005. An adenylyl cyclase pseudogene in Mycobacterium tuberculosis has a functional ortholog in Mycobacterium avium. Biochimie 87, 557-563.   DOI
2 Shenoy, A. R. and S. S. Visweswariah. 2006. Mycobacterial adenylyl cyclases: biochemical diversity and structural plasticity. FEBS Lett. 580, 3344-3352.   DOI
3 Shenoy, A. R. and S. S. Visweswariah. 2006. New messages from old messengers: cAMP and mycobacteria. Trends Microbiol. 14, 543-550.   DOI
4 Sinha, S. C., M. Wetterer, S. R. Sprang, J. E. Schultz, and J. U. Linder. 2005. Origin of asymmetry in adenylyl cyclases: structures of Mycobacterium tuberculosis Rv1900c. EMBO J. 24, 663-673.   DOI
5 Patel, T. B., Z. Du, S. Pierre, L. Cartin, and K. Scholich. 2001. Molecular biological approaches to unravel adenylyl cyclase signaling and function. Gene 269, 13-25.   DOI
6 Reddy, S. K., M. Kamireddi, K. Dhanireddy, L. Young, A. Davis, and P. T. Reddy. 2001. Eukaryotic-like adenylyl cyclases in Mycobacterium tuberculosis H37Rv: cloning and characterization. J. Biol. Chem. 276, 35141-35149.   DOI
7 Roy, A., A. Danchin, E. Joseph, and A. Ullmann. 1983. Two functional domains in adenylate cyclase of Escherichia coli. J. Mol. Biol. 165, 197-202.   DOI
8 Shenoy, A. R., N. P. Sreenath, M. Mahalingam, and S. S. Visweswariah. 2005. Characterization of phylogenetically distant members of the adenylate cyclase family from mycobacteria: Rv1647 from Mycobacterium tuberculosis and its orthologue ML1399 from M. leprae. Biochem. J. 387, 541-551.   DOI
9 Shenoy, A. R., N. Sreenath, M. Podobnik, M. Kovacevic, and S. S. Visweswariah. 2005. The Rv0805 gene from Mycobacterium tuberculosis encodes a 3',5'-cyclic nucleotide phosphodiesterase: biochemical and mutational analysis. Biochemistry 44, 15695-15704.   DOI
10 Kalamidas, S. A., M. P. Kuehnel, P. Peyron, V. Rybin, S. Rauch, O. B. Kotoulas, M. Houslay, B. A. Hemmings, M. G. Gutierrez, E. Anes, and G. Griffiths. 2006. cAMP synthesis and degradation by phagosomes regulate actin assembly and fusion events: consequences for mycobacteria. J. Cell Sci. 119, 3686-3694.   DOI
11 Kataoka, T., D. Broek, and M. Wigler. 1985. DNA sequence and characterization of the Sachharomyces cerevisiae gene encoding adenylate cyclase. Cell 43, 493-505.   DOI
12 Kido, M., F. Shima, T. Satoh, T. Asato, K. Kariya, and T. Kataoka. 2002. Critical function of the Ras-associating domain as a primary Ras-binding site for regulation of Saccharomyces cerevisiae adenylyl cyclase. J. Biol. Chem. 277, 3117-3123.   DOI
13 Antoni, F. A. 2000. Molecular diversity of cyclic AMP signalling. Front Neuroendocrinol. 21, 103-132.   DOI
14 Abdel, M. A., I. Tews, J. E. Schultz, and J. U. Linder. 2006. Fatty acid regulation of adenylyl cyclase Rv2212 from Mycobacterium tuberculosis H37Rv. FEBS J. 273, 4219-4228.   DOI
15 Agarwal, N., G. Lamichhane, R. Gupta, S. Nolan, and W. R. Bishai. 2009. Cyclic AMP intoxication of macrophages by a Mycobacterium tuberculosis adenylate cyclase. Nature 460, 98-102.   DOI
16 Anes, E., P. Peyron, L. Staali, L. Jordao, M. G. Gutierrez, H. Kress, M. Hagedorn, I. Maridonneau-Parini, M. A. Skinner, A. G. Wildeman, S. A. Kalamidas, M. Kuehnel, and G. Griffiths. 2006. Dynamic life and death interactions between Mycobacterium smegmatis and J774 macrophages. Cell Microbiol. 8, 939-960.   DOI
17 Baillie, L. and T. D. Read. 2001. Bacillus anthracis, a bug with attitude! Curr. Opin. Microbiol. 4, 78-81.   DOI
18 Tellez-Sosa, J., N. Soberón, A. Vega-Segura, M. E. Torres-Márquez, and M. A. Cevallos. 2002. The Rhizobium etli cyaC product: characterization of a novel adenylate cyclase class. J. Bacteriol. 184, 3560-3568.   DOI
19 Sismeiro, O., P. Trotot, F. Biville, C. Vivares, and A. Danchin. 1998. Aeromonas hydrophila adenylyl cyclase 2: a new class of adenylyl cyclases with thermophilic properties and sequence similarities to proteins from hyperthermophilic archaebacteria. J. Bacteriol. 180, 3339-3344.
20 Sunahara, R. K. and R. Taussig. 2002. Isoforms of mammalian adenylyl cyclase: multiplicities of signaling. Mol. Interv. 2, 168-184.   DOI
21 Tews, I., F. Findeisen, I. Sinning, A. Schultz, J. E. Schultz, and J. U. Linder. 2005. The structure of a pH-sensing mycobacterial adenylyl cyclase holoenzyme. Science 308, 1020-1023.   DOI
22 Yahr, T. L., A. J. Vallis, M. K. Hancock, J. T. Barbieri, D. W. Frank, and Y. Exo. 1998. An adenylate cyclase secreted by the Pseudomonas aeruginosa type III system. Proc. Natl. Acad. Sci. USA 95, 13899-13904.   DOI
23 Linder, J. U. 2005. Substrate selection by class III adenylyl cyclases and guanylyl cyclases. IUBMB Life 57, 797-803.   DOI
24 Linder, J. U. 2006. Class III adenylyl cyclases: molecular mechanisms of catalysis and regulation. Cell Mol. Life Sci. 63, 1736-1751.   DOI
25 Lowrie, D. B., V. R. Aber, and P. S. Jackett. 1979. Phagosome-lysosome fusion and cyclic adenosine 3':5'-monophosphate in macrophages infected with Mycobacterium microti, Mycobacterium bovis BCG or Mycobacterium lepraemurium. J. Gen. Microbiol. 110, 431-441.   DOI   ScienceOn
26 Mock, M., E. Labruyere, P. Glaser, A. Danchin, and A. Ullmann. 1988. Cloning and expression of the calmodulin-sensitive Bacillus anthracis adenylate cyclase in Escherichia coli. Gene 64, 277-284.   DOI
27 Linder, J. U., A. Schultz, and J. E. Schultz. 2002. Adenylyl cyclase Rv1264 from Mycobacterium tuberculosis has an autoinhibitory N-terminal domain. J. Biol. Chem. 277, 15271-15276.   DOI
28 Kobayashi, M., J. Buck, and L. R. Levin. 2004. Conservation of functional domain structure in bicarbonate-regulated soluble adenylyl cyclases in bacteria and eukaryotes. Dev. Genes Evol. 214, 503-509.
29 Krupinski, J., F. Coussen, H. A. Bakalyar, W. J. Tang, P. G. Feinstein, K. Orth, C. Slaughter, R. R. Reed, and A. G. Gilman. 1989. Adenylyl cyclase amino acid sequence: possible channel- or transporter-like structure. Science 244, 1558-1564.   DOI
30 Ladant, D. and A. Ullmann. 1999. Bordetella pertussis adenylate cyclase: a toxin with multiple talents. Trends Microbiol. 7, 172-176.   DOI
31 Linder, J. U. and J. E. Schultz. 2003. The class III adenylyl cyclases: multi-purpose signalling modules. Cell Signal. 15, 1081-1089.   DOI
32 Linder, J. U., A. Hammer, and J. E. Schultz. 2004. The effect of HAMP domains on class IIIb adenylyl cyclases from Mycobacterium tuberculosis. Eur. J. Biochem. 271, 2446-2451.   DOI
33 Baker, D. A. and J. M. Kelly. 2004. Structure, function and evolution of microbial adenylyl and guanylyl cyclases. Mol. Microbiol. 52, 1229-1242.   DOI
34 Botsford, J. L. and J. G. Harman. 1992. Cyclic AMP in prokaryotes. Microbiol. Rev. 56, 100-122.
35 Buck, J., M. L. Sinclair, L. Schapal, M. J. Cann, and L. R. Levin. 1999. Cytosolic adenylyl cyclase defines unique signaling molecule in mammals. Proc. Natl. Acad. Sci. USA 96, 79-84.   DOI
36 Cann, M. J., A. Hammer, J. Zhou, and T. Kanacher. 2003. A defined subset of adenylyl cyclases is regulated by bicarbonate ion. J. Biol. Chem. 278, 35033-35038.   DOI
37 Gallagher, D. T., N. N. Smith, S. K. Kim, A. Heroux, H. Robinson, and P. T. Reddy. 2006. Structure of the class IV adenylyl cyclase reveals a novel fold. J. Mol. Biol. 362, 114-122.   DOI
38 Castro, L. I., C. Hermsen, J. E. Schultz, and J. U. Linder. 2005. Adenylyl cyclase Rv0386 from Mycobacterium tuberculosis H37Rv uses a novel mode for substrate selection. FEBS J. 272, 3085-3092.   DOI
39 Chaloupka, J. A., S. A. Bullock, V. Iourgento, L. R. Levin, and J. Buck. 2006. Autoinhibitory regulation of soluble adenylyl cyclase. Mol. Reprod. Dev. 73, 361-368.   DOI
40 Cotta, M. A., T. R. Whitehead, and M. B. Wheeler. 1998. Identification of a novel adenylate cyclase in the ruminal anaerobe, Prevotella ruminicola D31d. FEMS Microbiol. Lett. 164, 257-260.   DOI
41 Guo, Y. L., U. Kurz, A. Schultz, J. U. Linder, D. Dittrich, C. Keller, S. Ehlers, P. Sander, and J. E. Schultz. 2005. Interaction of Rv1625c, a mycobacterial class IIIa adenylyl cyclase, with a mammalian congener. Mol. Microbiol. 57, 667-677.   DOI
42 Guo, Y. L., T. Seebacher, U. Kurz, J. U. Linder, and J. E. Schultz. 2001. Adenylyl cyclase Rv1625c of Mycobacterium tuberculosis: a progenitor of mammalian adenylyl cyclases. EMBO J. 20, 3667-3675.   DOI