Browse > Article
http://dx.doi.org/10.5352/JLS.2011.21.2.221

Enzymatic Characterization of a Thermostable 4-α-Glucanotransferase from Thermotoga neapolitana  

Choi, Kyoung-Hwa (Department of Microbiology, Pusan National University)
Seo, Ja-Yeong (Department of Microbiology, Pusan National University)
Kim, Ji-Eun (Department of Microbiology, Pusan National University)
Cha, Jae-Ho (Department of Microbiology, Pusan National University)
Publication Information
Journal of Life Science / v.21, no.2, 2011 , pp. 221-226 More about this Journal
Abstract
The gene encoding 4-$\alpha$-glucanotransferase (mgtA) from Thermotoga neapolitana was cloned and expressed in Escherichia coli in order to investigate whether this enzyme was capable of producing cycloamylose for industrial applications. MgtA was purified to homogeneity by HiTrap Q HP and Sephacryl S-200 HR column chromatographies. The size of the enzyme as determined by SDS-PAGE was about 52 kDa, which was in good agreement with its deduced molecular mass of 51.9 kDa. The optimal temperature and pH for the activity of the 4-$\alpha$-glucanotransferase was found to be $85^{\circ}C$ and 6.5, respectively. The enzyme hydrolyzed the 1,4-$\alpha$-glucosidic bonds in oligomeric 1,4-$\alpha$-glucans and transferred oligosaccharides (maltotriose being the shortest one) to acceptor maltodextrins. However, the enzymes had no activity against pullulan, glycogen, and other di- or trioligosaccharides with rare types of $\alpha$-bond. MgtA is distinguished from 4-$\alpha$-glucanotransferase from Thermotoga maritima in that it can convert maltotriose into maltooligosaccharides. The treatment of glucoamylase after the reaction of MgtA with maltotriose, maltotetraose, maltopentaose, or maltohexaose as sole substrate revealed that MgtA yielded linear maltooligosaccharides instead of cycloamylose.
Keywords
4-$\alpha$-Glucanotransferase; glycosyl hydrolase family 13; thermostability; Thermotoga neapolitana;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Terada, Y., K. Fujii, T. Takaha, and S. Okada. 1999. Thermus aquaticus ATCC 33923 amylomaltase gene cloning and expression and enzyme characterization: production of cycloamylose. Appl. Environ. Microbiol. 65, 910-915.
2 Park, T. H., K. W. Choi, C. S. Park, S. B. Lee, H. Y. Kang, K. J. Shon, J. S. Park, and J. Cha. 2005. Substrate specificity and transglycosylation catalyzed by a thermostable ${\beta}$-glucosidase form marine hyperthermophile Thermotoga neapolitana, Appl. Microbiol. Biotechnol. 69, 411-422.   DOI
3 Van der Maarel, M. J. E. C., I. Caprona, G. J. W. Euverink, H. T. P. Bos, T. Kaper, D. J. Binnema, and P. Steeneken. 2005. A novel thermoreversible gelling product made by enzymatic modification of starch. Starch 57, 465-472.   DOI
4 Zona, R., F. Chang-Pi-Hin, M. J. O’Donohue, and S. Janecek. 2004. Bioinformatics of the glycoside hydrolase family 57 and identification of catalytic residues in amylopullulanase from Thermococcus hydrothermalis. Eur. J. Bochem. 271, 2863-2872.   DOI
5 Machida, S., S. Ogawa, S. Xiaohua, T. Takaha, K. Fujii, and K. Hayashi. 2000. Cycloamylose as an efficient artificial chaperone for protein refolding. FEBS Lett. 486, 131-135.   DOI
6 Monod, J. and A. M. Torriani. 1948. Synthese d’un polysaccharide de type amidon aux depens du maltose, en presence d’un extrait enzymatique d’origine bacterienne. C.R. Acad. Sci. 227, 240-242.
7 Palmer, T. N., B. E. Ryman, and W. J. Whelan. 1976. The action pattern of amylolmaltase from Escherichia coli. Eur. J. Biochem. 69, 105-115.   DOI
8 Pazur, J. H. and S. Okada. 1968. The isolation and mode of action of a bacterial glucanotransferase. J. Biol. Chem. 243, 4732-4738.
9 Schinzel, R. and B. Nidetzky. 1999. Bacetrial ${\alpha}$-glucan phosphorylases. FEMS Microbiol. Lett. 171, 73-79.
10 Schmidt, J. and M. John. 1979. Starch metabolism in Pseudomonas stutzeri. II. Purification and properties of a dextrin glycosyl-transferase (D-enzyme) and amylomaltase. Biochim. Biophys. Acta 566, 100-114.   DOI   ScienceOn
11 Tachibana, Y., T. Takaha, S. Hujiwara, M. Takagi, and T. Imanaka. 2000. Acceptor specificity of 4-${\alpha}$-glucanotransferase from Pyrococcus kodakaraensis KOD1, and synthesis of cycloamylose. J. Biosci. Bioeng. 90, 406-409.   DOI
12 Takaha, T., M. Yanase, S. Okada, and S. M. Smith. 1993. Disproportionating enzyme (4-${\alpha}$-glucanotransferase; EC 2.4.1.25) of potato. Purification, molecular cloning, and potential role in starch metabolism. J. Biol. Chem. 268, 1391-1396.
13 Takaha, T., M. Yanase, H. Takata, S. Okada, and S. M. Smith. 1996. Potato D-enzyme catalyzes the cyclization of amylose to produce cycloamylose, a novel cyclic glucan. J. Biol. Chem. 271, 2902-2908.   DOI
14 Takaha, T. and S. M. Smith. 1999. The functions of 4-${\alpha}$-glucanotransferases and their use for the production of cyclic glucans. Biotechnol. Genet. Eng. Rev. 16, 257-280.   DOI   ScienceOn
15 Coutinho, P. M. and B. Henrissat. 1999. Carbohydrate-active enzymes: An integrated database approach, in Recent Advances in Carbohydrate Bioengineering. In Gilbert H. J., G. Davies, B. Henrissat, and B. Svensson (eds.), pp. 3-12, The Royal Society of Chemistry, Cambridge, England.
16 Goda, S. K., O. Eissa, M. Akhtar, and N. P. Minton. 1997. Molecular analysis of a Clostridium butyricum NCIMB 7423 gene encoding 4-${\alpha}$-glucanotransferase and characterization of the recombinant enzyme produced in Escherichia coli. Microbiology 143, 3287-3294.   DOI   ScienceOn
17 Liebl, W., R. Feil, J. Gabelsberger, J. Kellermann, and K. H. Schleifer. 1992. Purification and characterization of a novel thermostable 4-${\alpha}$-glucanotransferase of Thermotoga maritima cloned in Escherichia coli. Eur. J. Bochem. 207, 81-88.   DOI
18 Heinrich, P., W. Huber, and W. Liebl. 1994. Expression in Escherichia coli and structure of the gene encoding 4-${\alpha}$-glucanotransferase from Thermotoga maritima. Classification of maltodextrin glycosyltransferases into two distantly related enzyme subfamilies. Syst. Appl. Microbiol. 17, 297-305.   DOI   ScienceOn
19 Jeon, B. S., H. Taguchi, H. Sakai, T. Ohshima, T. Wakagi, and H. Matsuzawa. 1997. 4-${\alpha}$-glucanotransferase from a hyperthermophilic archaeon, Thermococcus litoralis: enzyme purification and characterization, and gene cloning, sequencing and expression in Escherichia coli. Eur. J. Biochem. 248, 171-178.   DOI
20 Kaper, T., B. Talik, T. J. Ettema, H. Bos, M. J. E. C. Van der Maarel, and L. Dijkhuizen. 2005. The amylomaltase of Pyrobaculum aerophilum IM2 produces thermo-reversible starch gels. Appl. Environ. Microbiol. 71, 5098-5106.   DOI
21 MacGregor, E. A., S. Janecek, and B. Svensson. 2001. Relationship of sequence and structure to specificity in the ${\alpha}$-amylase family of enzymes. Biochim. Biophys. Acta 1546, 1-20.   DOI
22 Boos, W. and H. Shuman. 1998. Maltose/maltodextrin system of Escherichia coli: Transport, metabolism, and regulation. Microbiol. Mol. Biol. Rev. 62, 204-229.
23 Berezina, O. V., V. V. Zverlov, N. A. Lunina, L. A. Chekanovskaya, E. N. Dubinina, W. Liebl, and G. A. Velikodvorskaya. 1999. Genes and properties of thermostable 4-${\alpha}$-glucanotransferase of Thermotoga neapolitana. Mol. Biol. 33, 801-806.
24 Bhuiyan, S. H., M. Kitaoka, and K. Hayashi. 2003. A cycloamylose-forming hyperthermostable 4-${\alpha}$-glucanotransferase of Aquifex aeolicus expressed in Escherichia coli. J. Mol. Catal. B: Enzym. 22, 45-53.   DOI
25 Bibel, M., C. Brettl, U. Gosslar, G. Kriegshauser, and W. Liebl. 1998. Isolation and analysis of genes for amylolytic enzymes of the hyperthermophilic bacterium Thermotoga maritima. FEMS Microbiol. Lett. 158, 9-15.   DOI