Browse > Article
http://dx.doi.org/10.5352/JLS.2011.21.1.159

Applications of Microbial Whole-Cell Biosensors in Detection of Specific Environmental Pollutants  

Shin, Hae-Ja (Energy Environmental Engineering Major, Division of Energy Bioengineering, Dongseo University)
Publication Information
Journal of Life Science / v.21, no.1, 2011 , pp. 159-164 More about this Journal
Abstract
Microbial whole-cell biosensors can be excellent analytical tools for monitoring environmental pollutants. They are constructed by fusing reporter genes (e.g., lux, gfp or lacZ) to inducible regulatory genes which are responsive to the relevant pollutants, such as aromatic hydrocarbons and heavy metals. A large spectrum of microbial biosensors has been developed using recombinant DNA technology and applied in fields as diverse as environmental monitoring, medicine, food processing, agriculture, and defense. Furthermore, their sensitivity and target range could be improved by modification of regulatory genes. Recently, microbial biosensor cells have been immobilized on chips, optic fibers, and other platforms of high-throughput cell arrays. This paper reviews recent advances and future trends of genetically modified microbial biosensors used for monitoring of specific environmental pollutants.
Keywords
Whole-cell biosensor; recombinant DNA technology; aromatic hydrocarbons; heavy metals;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yagi, K. 2007. Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl. Microbiol. Biotechnol. 73, 1251-1258.   DOI
2 Tani, H., K. Maehana, and T. Kamidate. 2004. Chip-based bioassay using bacterial sensor strains immobilized in three-dimensional microfuidic network. Anal. Chem. 76, 6693-6697.   DOI
3 Tecon, R. and J. R. van der Meer. 2006. Information from single-cell bacteria biosensors: what is it good for? Curr. Opin. Biotechnol. 17, 4-10.   DOI
4 Tibazarwa, C., P. Corbisier, M. Mench, A. Bossus, P. Solda, M. Mergeay, L. Wyns, and D. van der Lelie. 2001. A microbial biosensor to predict bioavailable nickel in soil and its transfer to plants. Environ. Pollut. 113, 19-26.   DOI
5 Trang, P. T., M. Berg, P. H. Viet, N. Van Mui, and J. R. van der Meer. 2005. Bacterial bioassay for rapid and accurate analysis of arsenic in highly variable groundwater samples. Environ. Sci. Technol. 39, 7625-7630.   DOI
6 van der Meer, J. R., D. Tropel, and M. Jaspers. 2004. Illuminating the detection chain of bacterial bioreporters. Environ. Microbiol. 6, 1005-1020.   DOI
7 Vedrine, C., J. C. Leclerc, C. Durrieu, and C. Tran-Minh. 2003. Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides. Biosens. Bioelectron. 18, 457-463.   DOI   ScienceOn
8 Vollmer, A. C. and T. K. Van Dyk. 2004. Stress responsive bacteria: Biosensors as environmental monitors. Adv. Microb. Physiol. 49, 131-174.   DOI
9 Werlen, C., M. C. M. Jaspers, and J. R. van der Meer. 2004. Measurement of biologically available naphthalene in gas and aqueous phases by use of a Pseudomonas putida biosensor. Appl. Environ. Microbiol. 70, 43-51.   DOI
10 Xu, Z., A. Mulchandani, and W. Chen. 2003. Detection of benzene, toluene, ethyl benzene, and xylenes (BTEX) using toluene dioxygenase-peroxidase coupling reactions. Biotechnol. Prog. 19, 1812-1815.   DOI
11 Paton, G. I., B. J. Reid, and K. T. Semple. 2009. Application of a luminescence-based biosensor for assessing naphthalene biodegradation in soils from a manufactured gas plant. Environ. Pollut. 157, 1643-1648.   DOI
12 Peitzsch, N., G. Eberz, and D. H. Nies. 1998. Alcaligenes eutrophus as a bacterial chromate sensor. Appl. Environ. Microbiol. 64, 453-458.
13 Petanen, T., M. Virta, M. Karp, and M. Romantschuk. 2001. Construction and use of broad host range mercury and arsenite sensor plasmids in the soil bacterium Pseudomonas fluorescens OS8. Microb. Ecol. 41, 360-368.
14 Ron, E. Z. 2007. Biosensing environmental pollution. Curr. Opin. Biotechnol. 18, 252-256.   DOI
15 Shin, H. J. 2010. Development of highly-sensitive microbial biosensors by mutation of the nahR regulatory gene. J. Biotechnol. 150, 246-250.
16 Stocker, J., D. Balluch, M. Gsell, H. Harms, J. S. Feliciano, K. A. Malick, S. Daunert, and J. R. van der Meer. 2003. Development of a set of simple bacterial biosensors for quantitative and rapid field measurements of arsenite and arenate in potable water. Environ. Sci. Technol. 37, 4743-4750.   DOI
17 Shin, H. J., H. H. Park, and W. K. Lim. 2005. Freeze-dried recombinant bacteria for on-site detection of phenolic compounds by color change. J. Biotechnol. 119, 36-43.   DOI
18 Sorensen, S. J., M. Burmolle, and L. H. Hansen. 2006. Making bio-sense of toxicity: new developments in whole-cell biosensors. Curr. Opin. Biotechnol. 17, 11-16.   DOI
19 Stiner, L. and L. J. Halverson. 2002. Development and characterization of a green fluorescent protein-based bacterial biosensor for bioavailable toluene and related compounds. Appl. Environ. Microbiol. 68, 1962-1971.   DOI
20 Mulchandani, P., W. Chen, A. Mulchandani, J. Wang, and L. Chen. 2001. Amperometric microbial biosensor for direct determination of organophosphate pesticides using recombinant microorganism with surface expressed organophosphorous hydrolase. Biosens. Bioelectron. 16, 433-437.   DOI   ScienceOn
21 Norman, A., L. H. Hansen, and S. J. Sorensen. 2005. Construction of a ColD cda promoter-based SOS-green fluorescent protein whole-cell biosensor with higher sensitivity toward genotoxic compounds than constructs based on recA, umuDC, or sul4 promoters. Appl. Environ. Microbiol. 71, 2338-2346.   DOI
22 Oda, Y., K. Funasaka, M. Kitano, A. Nakama, and T. Yoshikura. 2004. Use of a high-throughput umu-microplate test system for rapid detection of genotoxicity produced by mutagenic carcinogens and airborne particulate matter. Environ. Mol. Mutag. 43, 10-19.   DOI
23 Park, H. H., W. K. Lim, and H. J. Shin. 2005b. In vitro binding of purified NahR regulatory protein with promoter Psal. Biochim. Biophys. Acta. 1725, 247-255.   DOI   ScienceOn
24 Odaci, D., S. Timur, and A. Telefoncu. 2009. A microbial biosensor based on bacterial cells immobilized on chitosan matrix. Bioelectrochem. 75, 77-82.   DOI
25 Paitan, Y., I. Biran, N. Shechter, D. Biran, J. Rishpon, and E. Z. Ron. 2004. Monitoring aromatic hydrocarbons by whole cell electrochemical biosensors. Anal. Biochem. 335, 175-183.   DOI
26 Park, H. H., H. Y. Lee, W. K. Lim, and H. J. Shin. 2005. NahR: effects of replacements at Asn 169 and Arg 248 on promoter binding and inducer recognition. Arch. Biochem. Biophys. 434, 67-74.   DOI
27 Park, S. M., H. H. Park, W. K. Lim, and H. J. Shin. 2003. A new variant activator involved in the degradation of phenolic compounds from a strain of Pseudomonas putida. J. Biotechnol. 103, 227-236.   DOI
28 Harms, H., M. C. Wells, and J. R. van der Meer. 2006. Whole-cell living biosensors-are they ready for environmental application? Appl. Microbiol. Biotechnol. 70, 273-280.   DOI
29 Ivask, A., M. Virta, and A. Kahru. 2001. Detection of organomercurials with sensor bacteria. Soil Biol. Biochem. 34, 1439-1447.
30 Keane, A., P. Phoenix, S. Goshal, and P. C. Lau. 2002. Exposing culprit organic pollutants: a review. J. Microbiol. Methods 49, 103-119.   DOI   ScienceOn
31 Kim, M. N., H. H. Park, W. K. Lim, and H. J. Shin. 2005. Construction and comparison of Escherichia coli whole-cell biosensors capable of detecting aromatic compounds. J. Microbiol. Methods 60, 235-245.   DOI
32 Marques, S., I. Aranda-Olmedo, and J. L. Ramos. 2006. Controlling bacterial physiology for optimal expression of gene reporter constructs. Curr. Opin. Biotechnol. 17, 50-56.   DOI
33 Kumar, J., S. K. Jha, and S. F. D’Souza. 2006. Optical microbial biosensors for detection of methyl parathion pesticide using Flavobacterium sp. whole cells adsorbed on glass fiber filters as disposable biocomponent. Biosens. Bioelectron. 15, 2100-2105.
34 Lei, Y., W. Chen, and A. Mulchandani. 2006. Microbial biosensors. Anal. Chim. Acta. 568, 200-210.   DOI
35 Lei, Y., P. Mulchandani, J. Wang, W. Chen, and A. Mulchandani. 2005. Highly sensitive and selective amperometric microbial biosensor for direct determination of p-nitropenyl- substituted organophosphate nerve agents. Environ. Sci. Technol. 39, 8853-8857.   DOI
36 Matsui, N., T. Kaya, K. Nagamine, T. Yasukawa, H. Shiku, and T. Matsue. 2006. Electrochemical mutagen screening using microbial chip. Biosens. Bioelectron. 21, 1202-1209.   DOI
37 Medintz, I. L. and J. R. Deschamps. 2006. Maltose-binding protein: a versatile platform for prototyping biosensing. Curr. Opin. Biotechnol. 17, 17-27.   DOI
38 Diaz, E. and M. A. Prieto. 2000. Bacterial promoters triggering biodegradation of aromatic pollutants. Curr. Opin. Biotechnol. 11, 467-475.   DOI
39 Diplock, E. E., D. P. Mardlin, K. S. Killham, and G. I. Paton. 2009. Predicting bioremediation of hydrocarbons: Laboratory to field scale. Environ. Pollut. 157, 1831-1840.   DOI
40 D’Souza, S. F. 2001. Microbial biosensors. Biosens. Bioelectron. 16, 337-353.   DOI   ScienceOn
41 Galvao, T. C. and V. de Lorenzo. 2007. Transcriptional regulators a la carte: engineering new effector specificities in bacterial regulatory proteins. Curr. Opin. Biotechnol. 17, 34-42.
42 Durrieu, C. and C. Tran-Minh. 2002. Optical algal biosensor using alkaline phosphatase for determination of heavy metals. Ecotoxicol. Environ. Saf. 51, 206-209.   DOI
43 Farre, M., C. Goncales, S. Lacorte, D. Barcelo, and M. F. Alpendurada. 2002. Pesticide toxicity assessment using an electrochemical biosensor with Pseudomonas putida and a bioluminescence inhibition assay with Vibrio fischeri. Anal. Bioanal. Chem. 373, 696-703.   DOI
44 Fujimoto, H., M. Wkabayashi, H. Yamashiro, I. Maeda, K. Isoda, M. Kondoh, M. Kawase, H. Miyasaka, and K. Yagi. 2006. Whole-cell arsenite biosensor using photosynthetic bacterium Rhodovulum sulfidophilum: Rhodovulum sulfidophilum as an arsenite biosensor. Appl. Microbiol. Biotechnol. 73, 332-338.   DOI
45 Hakkila, K., T. Green, P. Lesknen, A. Ivask, R. Marks, and M. Virta. 2004. Detection of bioavailable heavy metals in EILATox-oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fibre-optic tips. J. Appl. Toxicol. 24, 333-342.   DOI
46 Hansen, L. H. and S. J. Sorensen. 2001. The use of whole-cell biosensors to detect and quantify compounds or conditions affecting biological systems. Microb. Ecol. 42, 483-444.   DOI
47 Dawson, J. J. C., C. O. Iroegbu, H. Maciel, and G. I. Paton. 2008. Application of luminescent biosensors for monitoring the degradation and toxicity of BTEX compound in soils. J. App. Microbiol. 104, 141-151.
48 Bechor, O., D. R. Smulski, T. K. Van Dyk, and R. A. LaRossa. 2002. Recombinant microorganisms as environmental biosensors: pollutants detection by Escherichia coli bearing fab'::lux fusions. J. Biotechnol. 94, 125-132.   DOI
49 Belkin, S. 2003. Microbial whole-cell sensing systems of environmental pollutants. Curr. Opin. Microbiol. 6, 206-212.   DOI
50 Biran, I., R. Babai, K. Levcov, J. Rishpon, and E. Z. Ron. 2000. Online and in situ monitoring of environmental pollutants: electrochemical biosensing of cadmium. Environ. Microbiol. 2, 27-33.   DOI
51 Deng, L., S. Guo, M. Zhou, L. Liu, C. Liu, and S. Dong. 2010. A silk derived carbon fiber mat modifided with Au@Pt urchilike nanoparticles: A new platform as electrochemical microbial biosensor. Biosens. Bioelectron. 25, 2189-2193.   DOI