Browse > Article
http://dx.doi.org/10.5352/JLS.2011.21.1.15

Identification and Genetic Diversity of Korean Tomato Cultivars by RAPD Markers  

Huh, Man-Kyu (Department of Molecular Biology, Dong-eui University)
Youn, Sun-Joo (Biofamer Co. Ltd.)
Kang, Sun-Chul (Department of Biotechnology, Daegu University)
Publication Information
Journal of Life Science / v.21, no.1, 2011 , pp. 15-21 More about this Journal
Abstract
Cultivated tomato, Lycopersicum esculentum, is a very important crop. We selected 36 cultivars and studied them for identification and polymorphism by employing random amplified DNA (RAPD) analysis with 80 oligonucleotide primers. Of the 80 primers, 36 primers (45.0%) were polymorphic. Detection of polymorphism in cultivated tomato opens up the possibility of development of its molecular map by judicious selection of genotypes. Molecular markers can also be used for cultivar identification and protection of the plant breeder's intellectual property rights (plant breeders' rights, PBRs). As an example, DNA polymorphism using OPC-13 primer that did not produce the OPC-13-01 band was only found in Junk Pink and Ailsa Craighp cultivars. OPA-12-03 and OPB-15-07 were fragments specific to the TK-70 cultivar and were absent in other cultivars. DNA polymorphism in cultivated tomato in this study was correlated with a type of inflorescence, although some cultivars had exceptions. These approaches will be useful for developing marker-assisted selection tools for genetic enhancement of the tomato plant for desirable traits.
Keywords
Tomato; Lycopersicum esculentum; cultivar; random amplified DNA (RAPD);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ilbi, H. 2003. RAPD markers assisted varietal identification and genetic purity test in pepper, Capsicum annuum. SciHort. 97, 211-218.   DOI
2 Kresovich, S., J. G. K. Williams, J. R. McFerson, E. J. Routman, and B. A. Schaal. 1992. Characterization of genetic identities and relationships of Brassica oleraceae L. via a random amplified polymorphic DNA assay. Theor. Appl. Genet. 85, 190-196.
3 Macko, A. and D. Grzebelus. 2008. DcMater trasposon display markers as a tool for diversity evaluation of carrot breeding materials and for hybrid seed purity testing. J. Appl. Genet. 49, 33-39.   DOI
4 Martinez, S. G., L. Andreani, M. G. Gusano, F. Geuna, and J. J. Ruiz. 2006. Evaluation of amplified fragment length polymorphism and simple sequence repeats for tomato germplasm fingerprinting: utility for grouping closely related traditional cultivars. Genome 49, 648-656.   DOI
5 Molnar, S. J., L. E. James, and K. J. Kasha. 2000. Inheritance and RAPD tagging of multiple genes for resistance to net blotch in barley. Genome 43, 224-231.   DOI
6 Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U.S.A. 70I, 3321-3323.   DOI
7 Paran, I., M. Horowitz, D Zamir, and S. Wolf. 1995. Random amplified polymorphic DNA markers are useful for purity determination of tomato hybrids. HortScience 30, 377.
8 Rick, C. M. 1990. J. W. de Verna, and R. T. Chetelet. 1990. Experimental ingression to the cultivated tomato from related wild nightshades, pp. 19-30, In Bennett, A. B. and S. D. O'Neill (eds.), Horticultural biotechology. New York.
9 Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.   DOI
10 Carelli, B. P., L. T. S. Gerald, F. G. Grazziotin, and S. Echeverrigaray. 2006. Genetic diversity among Brazilian cultivars and land laces of tomato Lycopersicon esculentum Mill. revealed by RAPD markers. Genet. Res. Crop. Evol. 53, 395-400.   DOI
11 Ciccarese, F., M. Amenduni, D. Schiavone, and M. Cirulli. 1998. Occurrence and inheritance of resistance to powdery mildew (Oidium lycopersici) in Lycopersicon species. Plant Pathology 47, 417-419.   DOI
12 Cooke, R. J., G. M. M. Bredemeifer, M. W. Ganal, R. Peeters, P. Isaac, and S. Rendell. 2003. Assessment of the uniformity of wheat and tomato varieties at DNA microsattellite loci. Euphytica 132, 331-341.   DOI
13 Demeke, T., R. P. Adams, and R. Chibbar. 1992. Potential taxonomic use of random amplified polymorphic DNA (RAPD): a case study in Brassica. Theor. Appl. Genet. 84, 990-994.
14 Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) Version 3.5s. Distributed by the Author. Department of Genetics, Univ. of Washington, Seattle.
15 Ghislain, M., D. Zhang, D. Fajardo, Z. Huaman, and R. J. Hijmans. 1999. Marker-associated sampling of the cultivated Andean potato Solanum phureja collection using RAPD markers. Genet. Res. Crop. Evol. 46, 547-555.   DOI
16 Huang, C. C., Y. Y. Cui, C. R. Weng, P. Zabel, and P. Lindhout. 2000. Development of diagnostic PCR markers closely linked to the tomato powdery mildew resistance gene Ol-1 on chromosome 6 of tomato. Theor. Appl. Genet. 101, 918-924.   DOI
17 Lee, W. S., B. S. Kim, and H. Y. Lee. 2002. Horticultural characteristics of valuable strains in cherry tomato. Korean J. Hort. Sci. Techol. 20, 74.
18 Helentjaris, T., G. King, M. Slocum, C. Siedenstrang, and S. Wegman. 1985. Restriction fragment polymorphisms as probes for plant diversity and their development as tools for applied breeding. Plant Mol. Biol. 5, 109-118.   DOI
19 Subramanian, V., S. Gurtu, R. C. Nageswara, and S. H. Higam. 2000. Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (RAPD) assay. Genome 43, 646-660.
20 Ballester, J. and M. C. de Vicente. 1998. Determination of F1 hybrid seed purity in pepper using PCR-based markers. Euphytica 103, 223-226.   DOI
21 Yeh, F. C., R. C. Yang, and T. Boyle. 1999. POPGENE Version 1.31, Microsoft Windows-based Freeware for Population Genetic Analysis. University of Alberta, Alberta.
22 Williams, J. G. K, A. R. Kubelik, K. J. Livak, J. A. Rafalski, and S. V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18, 6531-6535.   DOI