Browse > Article
http://dx.doi.org/10.5352/JLS.2011.21.12.1716

Isolation of Bacillus subtilis CK-2 Hydrolysing Various Organic Materials  

Kim, Chul-Ho (Department of Phamaceutical Engineering, Gyeongnam National University of Science and Technology)
Lee, Sang-Hyup (Department of Phamaceutical Engineering, Gyeongnam National University of Science and Technology)
Publication Information
Journal of Life Science / v.21, no.12, 2011 , pp. 1716-1720 More about this Journal
Abstract
A bacterium hydrolysing various organic materials including cellulose, protein, starch and lipid was isolated. The isolate was identified as Bacillus subtilis, and named Bacillus subtilis CK-2 in this paper. This bacterium showed optimal growth at $40\sim45^{\circ}C$, pH 6~9, and 0~3% of NaCl. B. subtilis CK-2 seemed to synthesis highly active autolysin. The hydrolytic enzymes produced by B. subtilis CK-2 were primary enzymes because extracellular enzyme activities varied similarly to the growth curve. The hydrolytic enzymes seemed to be stable at basic pH conditions. From these results, B. subtilis CK-2 was found to bea useful bacterial agent for composting, or for use in feed-production waste in agriculture, fishery, forest materials, livestock farming, and food.
Keywords
Bacillus subtilis; cellulase; protease; amylase; lipase;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ariffin, H., N. Abdullah, M. S. U. Kalsom, Y. Shirai, and M. A. Hassan. 2006. Production and characterisation of cellulase by Bacillus pumilus EB3. International J. Engineering and Technology 3, 47-53.
2 Bailey, M. J., P. Biely, and K. Poutanen. 1992. Inter-laboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23, 257-270.   DOI   ScienceOn
3 Bhat, M. K. and S. Bhat, 1997. Celllose degrading enzymes and their potential industrial applications. Biotechnology Advences 15, 583-620.   DOI   ScienceOn
4 Coral, G., B. Arikan, M. N. Ünaldi, and H. Güvenmez. 2002. Some properties of crude carboxymethyl cellulase of Aspergillus niger Z10 wild-type strain. Turk J. Biol. 26, 209-213.
5 Emtiazi, G. and I. Nahvi. 2004. Production of thermostable α-amylase and cellulase from Cellulomonas sp.. J. Microbiol. Biotechnol. 14, 1196-1199.
6 Nakasaki, K. and T. Akiyama. 1988. Effect of seeding on thermophilic composting of household organic waste. J. Ferment. Technol. 66, 37-42.   DOI   ScienceOn
7 Nascimento, W. C. A. and M. L. L. Martins. 2004. Production and properties of an extracellular protease from thermophilic Bacillus sp.. Braz. J. Microbiol. 35, 91-96.   DOI   ScienceOn
8 Robson, L. M. and G. H. Chambliss. 1989. Cellulases of bacterial origin enzyme. Microb. Technol. 11, 612-643.
9 Rubin, B. and E. A. Dennis. 1997. Lipases: Part A. Biotechnology Methods in Enzymology, vol. 284. pp. 1-408, Academic Press, New York.
10 Sigh, J., N. Batra, C. R. Sobti. 2001. Serine alkaline protease from a newly isolated Bacillus sp. SSR1. Proc. Biochem. 36, 781-785.   DOI   ScienceOn
11 Takamoto, T., H. Shirasaka, H. Uyama, S. Kobayashi. 2001. Lipase-catalyzed hydrolytic degradation of polyurethane in organic solvent. Chem. Lett. 6, 492-493.
12 Ibrahim, A. S. S. and A. K. El-diwany. 2007. Isolation and identification of new cellulases producing thermophilic bacteria from an Egyptian hot spring and some properties of the crude enzyme. Aust. J. Basic & Appl. Sci. 1, 473-478.
13 Wood, T. M. and K. M. Bhat. 1988. Methods for measuring cellulose activities. Methods Enzymol. 160, 87-112.   DOI
14 Yi, J. C., A. B. Sandra, and T. C. Shu, 1999. Production and distribution of endoglucanase, cellobiohydrolase, and $\beta$-glucosidase components of the cellulolytic system of Volvariella volvacea, the edible straw mushroom. Appl. Environ. Microbiol. 65, 553-559.
15 Heck, J. X., P. F. Hertz, and M. A. Z. Ayub, 2002. Cellulase and xylanase production by isolated amazon Bacillus strains using soybean industrial residue based solid-state cultivation. Brazil. J. Microbiol. 33, 213-218.   DOI   ScienceOn
16 Igarashi, K., Y. Hatada, H. Hagihara, K. Saeki, M. U. T. Takaiwa, K. Arai, K. Ozaki, S. Kawai, T. Kobayashi, and S. Ito. 1998. Enzymatic properties of a novel liquefying α -amylase from an alkalophilic Bacillus isolated and entire nucleotide and ammino acid sequences. Appl. Environ. Microbiol. 64, 3282-3289.
17 Katz, M. and E. T. Reese. 1968. Production of glucose by enzymatic hydrolysis of cellulose. Appl. Microbiol. 16, 419-420.
18 Janssen, P. H., K. Peek, H. W. Morgan. 1994. Effect of culture conditions on the production of a extracellular proteinase by Thermus sp. Rt41A. Appl. Microbiol. Biotechnol. 41, 400-406.   DOI
19 Johansson, T. and P. O. Nyman, 1993. Isoenzymes of lignin peroxidase and manganese peroxidase from the white-rot Basidiomycete. Arch. Biochem. Biophys. 300, 49-56.   DOI   ScienceOn
20 Kim, C. H., M. H. Leam, and Y. K. Choi, 1997. Isolation of a bacterium that inhibits the growth of Anabaean cylindrica. The Journal of Microbiol. 35, 284-289.
21 Lee, H. S., Y. W. Ryu, and C. Kim, 1994. Hydrolysis of starch by $\alpha$-amylase and glucoamylase in supercritical carbon dioxide. J. Microbiol. Biotechnol. 4, 230-232.
22 Masse, L., K. J. Kennedy, and S. P. Chou, 2001. The effect of an enzymatic pretreatment on the hydrolysis and size reduction of fat particales in slaughterhouse wastewater. J. Chem. Technol. Biotechnol. 76, 629-635.   DOI   ScienceOn
23 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426-428.   DOI