Browse > Article
http://dx.doi.org/10.5352/JLS.2010.20.3.321

Identification of Inhibitory Effect on Streptococcus mutans by Oleanolic Acid  

Yoon, Yo-Han (Team for Radiation Food Science & Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
Choi, Kyoung-Hee (Department of Oral Microbiology, College of Dentistry, Wonkwang University)
Publication Information
Journal of Life Science / v.20, no.3, 2010 , pp. 321-325 More about this Journal
Abstract
Among endogenous oral microflora, Streptococcus mutans plays a critical role in dental plaque formation, which mainly contributes to the development of caries and periodontal disease. Phytochemicals are plant-derived chemical compounds that have been studied as beneficial nutrients to human health. The purpose of this study was to determine the effects of phytochemicals against S. mutans. Among them, oleanolic acid (OA) and 5-(hydroxymethyl)-2-furfural (HF) from Thomson seedless raisins were tested for anti-microbial effects against various clinically important bacteria. OA inhibited the growth of Gram-positive bacteria, but not Gram-negative bacteria. However, HF did not display any antibacterial effect against any of the strains tested. OA also exhibited inhibitory effects in surface adherence and biofilm formation of S. mutans. The results suggest that OA can be utilized as a potential anti-plaque and anti-caries agent by controlling the physiological characteristics of S. mutans on teeth.
Keywords
Streptococcus mutans; phytochemicals; oleanolic acid; biofilm;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wu, C. D. 2009. Grape products and oral health. J. Nutr. 139, 1818S-1823S   DOI
2 Sanchez, M., C. Theoduloz, G. Schmeda-Hirschmann, I. Razmilic, T. Yanez, and J. A. Rodriguez. 2006. Gastroprotective and ulcer-healing activity of oleanolic acid derivatives: in vitro-in vivo relationships. Life Sci. 79, 1349-1356.   DOI
3 Schilling, K., M. and W. H. Bowen. 1992. Glucans synthesized in situ in experimental salivary pellicle function as specific binding sites for Streptococcus mutans. Infect. Immun. 60, 284-295.
4 Sohn, K. H., H. Y. Lee, H. Y. Chung, H. S. Young, S. Y. Yi, and K. W. Kim. 1995. Anti-angiogenic activity of triterpene acids. Cancer Lett. 94, 213-218.   DOI
5 Takeuchi, K., H. Tomita, S. Fujimoto, M. Kudo, H. Kuwano, and Y. Ike. 2005. Drug resistance of Enterococcus faecium clinical isolates and the conjugative transfer of gentamicin and erythromycin resistance traits. FEMS Microbiol. Lett. 243, 347-354.   DOI
6 van Loosdrecht, M. C. M., W. Norde, J. Lyklema, and A. J. B. Zehnder. 1990. Hydrophobic and electrostatic parameters in bacterial adhesion. Aquatic Sciences 52, 103-114.   DOI
7 Vazquez-Boland, J. A., M. Kuhn, P. Berche, T. Chakraborty, G. Dominguez-Bernal, W. Goebel, B. Gonzalez-Zorn, J. Wehland, and J. Kreft. 2001. Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 14, 584-640.   DOI
8 Yamanaka-Okada, A., E. Sato, T. Kouchi, R. Kimizuka, T. Kato, and K. Okuda. 2008. Inhibitory effect of cranberry polyphenol on cariogenic bacteria. Bull. Tokyo Dent. Coll. 49, 107-112.   DOI
9 Yoshida, A., T. Ansai, T. Takehara, and H. K. Kuramitsu. 2005. LuxS-based signaling affects Streptococcus mutans biofilm formation. Appl. Environ. Microbiol. 71, 2372-2380.   DOI
10 Wen, Z. T. and R. A. Burne. 2002. Functional genomics approach to identifying genes required for biofilm development by Streptococcus mutans. Appl. Environ. Microbiol. 68, 1196-1203.   DOI
11 Islam, B., S. N. Khan, I. Haque, M. Alam, M. Mushfiq, and A. U. Khan. 2008. Novel anti-adherence activity of mulberry leaves: inhibition of Streptococcus mutans bio-film by 1-deoxynojirimycin isolated from Morus alba. J. Antimicrob. Chemother. 62, 751-757.   DOI
12 Jimenez-Arellanes, A., M. Meckes, J. Torres, and J. Luna-Herrera. 2007. Antimycobacterial triterpenoids from Lantana hispida (Verbenaceae). J. Ethnopharmacol. 111, 202-205.   DOI
13 Mattos-Graner, R. O., M. H. Napimoga, K. Fukushima, M. J. Duncan, and D. J. Smith. 2004. Comparative analysis of Gtf isozyme production and diversity in isolates of Streptococcus mutans with different biofilm growth phenotypes. J. Clin. Microbiol. 42, 4586-4592.   DOI
14 Kashiwada, Y., H. K. Wang, T. Nagao, S. Kitanaka, I. Yasuda, T. Fujioka, T. Yamagishi, L. M. Cosentino, M. Kozuka, H. Okabe, Y. Ikeshiro, C. Q. Hu, E. Yeh, and K. H. Lee. 1998. Anti-AIDS agents. 30. Anti-HIV activity of oleanolic acid, pomolic acid, and structurally related triterpenoids. J. Nat. Prod. 61, 1090-1095.   DOI
15 Kurek, A., A. M. Grudniak, M. Szwed, A. Klicka, L. Samluk, K. I. Wolska, W. Janiszowska, and M. Popowska. 2009. Oleanolic acid and ursolic acid affect peptidoglycan metabolism in Listeria monocytogenes. Antonie Van Leeuwenhoek in press.
16 Loo, C. Y., D. A. Corliss, and N. Ganeshkumar. 2000. Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J. Bacteriol. 182, 1374-1382.   DOI
17 Merritt, J., F. Qi, S. D. Goodman, M. H. Anderson, and W. Shi. 2003. Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect. Immun. 71, 1972-1979.   DOI
18 Poros-Gluchowska, J. and Z. Markiewicz. 2003. Antimicrobial resistance of Listeria monocytogenes. Acta Microbiol. Pol. 52, 113-129.
19 Rutter, P. R. and A. Abbott. 1978. A study of the interaction between oral Streptococci and hard surfaces. J. Gen. Microbiol. 105, 219-226.   DOI   ScienceOn
20 Aoki, H., T. Shiroza, M. Hayakawa, S. Sato, and H. K. Kuramitsu. 1986. Cloning of a Streptococcus mutans glucosyltransferase gene coding for insoluble glucan synthesis. Infect Immun. 3, 587-594.
21 Aparecida Resende, F., C. A. de Andrade Barcala, M. C. da Silva Faria, F. H. Kato, W. R. Cunha, and D. C. Tavares. 2006. Antimutagenicity of ursolic acid and oleanolic acid against doxorubicin-induced clastogenesis in Balb/c mice. Life Sci. 79, 1268-1273.   DOI
22 Banas, J. A. and M. M. Vickerman. 2003. Glucan-binding proteins of the oral streptococci. Crit. Rev. Oral Biol. Med. 14, 89-99.   DOI
23 Biswas, S. and I. Biswas. 2006. Regulation of the glucosyltransferase (gtfBC) operon by CovR in Streptococcus mutans. J. Bacteriol. 188, 988-998.   DOI
24 Giner-Larza, E. M., S. Manez, M. C. Recio, R. M. Giner, J. M. Prieto, M. Cerda-Nicolas, and J. L. Rios. 2001. Oleanonic acid, a 3-oxotriterpene from Pistacia, inhibits leukotriene synthesis and has anti-inflammatory activity. Eur. J. Pharmacol. 428, 137-143.   DOI
25 Horiuchi, K., S. Shiota, T. Hatano, T. Yoshida, T. Kuroda, and T. Tsuchiya. 2007. Antimicrobial activity of oleanolic acid from Salvia officinalis and related compounds on vancomycin-resistant enterococci (VRE). Biol. Pharm. Bull. 30, 1147-1149.   DOI