Browse > Article
http://dx.doi.org/10.5352/JLS.2010.20.11.1667

Influence of Nitrate on Growth, Chlorophyll Content, Content and Activity of Rubisco and Rubisco Activase of Tobacco Plant Treated with Cadmium in vitro  

Roh, Kwang-Soo (Department of Biology, Keimyung University)
Publication Information
Journal of Life Science / v.20, no.11, 2010 , pp. 1667-1674 More about this Journal
Abstract
Influence of nitrate on growth, chlorophyll content, content and activity of rubisco and rubisco activase of tobacco plant cultured on MS medium treated with cadmium in vitro was studied. In vitro growth and chlorophyll content reduced at 0.2 mM Cd was recovered by nitrate and this recovery was most significant at 80 mM nitrate. Rubisco content at 80 mM nitrate was more increased compared to that at other concentrations. A similar change was also shown in rubisco activity. These resultsindicate that the activation and induction of rubisco reduced by Cd were recovered by nitrate. The degree of intensity of 55 and 15 kD polypeptides identified as the large and small subunits of rubisco by SDS-PAGE analysis at 80 mM nitrate was significantly higher than that at other concentrations. The content and activity of rubisco activase at 80 mM nitrate was significantly increased than that at other concentrations. These data suggest that the recovery effects of rubisco by nitrate may be associated with rubisco activase.
Keywords
Cd; chlorophyll; nitrate; rubisco; rubisco activase;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Wang, X. and F. E. Below. 1996. Cytokinins in enhanced growth and tillering of wheat induced by mixed nitrogen source. Crop Science 36, 121-126.   DOI
2 Wang, Z. Y., G. W. Snyder, B. D. Esau, A. R. Portis Jr., and W. L. Ogren. 1992. Species-dependent variation in the interaction of substrate-bound ribulose-1,5-bisphosphate carboxylase/oxygenase and rubisco activase. Plant Physiol. 100, 1858-1862.   DOI
3 Weigel, H. J. 1985. Inhibition of photosynthetic reactions of isolated chloroplasts by cadmium. J. Plant Physiol. 119, 179-189.   DOI
4 Weigel, H. J. 1985. The effect of $Cd^2+$ on photosynthetic reactions of mesophyll protoplasts. Physiol. Plant 63, 192-200.   DOI
5 Yamashita, T. 1986. Changes in ribulose 1,5-bisphosphate carboxylase concentration due to external nitrogen supply. Ann. Bot. 58, 277-280.
6 Yang, Y. J., L. M. Cheng, and Z. H. Liu. 2007. Rapid effect of cadmium on lignin biosynthesis in soybean roots. Plant Sci. 172, 632-639.   DOI
7 Zhang, N. and A. R. Portis Jr. 1999. Mechanism of light regulation of rubisco: A specific role for the larger rubisco activase isoform involving reductive activation by thioredoxin-f. Proc. Natl. Acad. Sci. USA. 96, 9438-9443.   DOI
8 Zhang, N., P. Schürmann, and A. R. Portis Jr. 2001. Characterization of the regulatory function of the 46-kD isoform of rubisco activase from Arabidopsis. Photosynth. Res. 68, 29-37.   DOI
9 Shah, K. and R. S. Dubey. 1995. Effect of cadmium on RNA level as well as activity and molecular forms of ribonuclease in growing rice seedlings. Plant Physiol. Biochem. 33, 577-584.
10 Shoeran, I. S., H. R. Signal, and R. Singh. 1990. Effect of cadmium and nickel on photosynthesis and the enzyme of the photosynthetic carbon reduction cycle in pigeopea (Cajanus cajan L.). Photosynth. Res. 23, 345-351.   DOI
11 Siedlecka, A. and Z. Krupa. 1996. Interaction between cadmium and iron and its effects on photosynthetic capacity of primary leaves of Phaseolus vulgaris. Plant Physiol. Biochem. 34, 833-841.
12 Skorzynska-Polit, E. and T. Baszynski. 1995. Some aspects of runner bean plant response to cadminm at different stages of the primary leaf growth. Acta Soc. Bot. Pol. 64, 165-170.   DOI
13 Somashekaraiah, B. V., K. Padmaja, and A. R. K. Prasad. 1992. Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgarts): involvement of lipid peroxides in chlorophyll degradation. Physiol. Plant 85, 85-89.   DOI
14 Stiborova, M. 1988. $Cd^2+$ ions affect the quaternary structure of ribulose-1.5 bisphosphate carboxylase from barley leaves. Biochemia Physiologia Pflanzen 183, 371-378.   DOI
15 Stobart, A., K, W. T. Griffiths, I. Ameen-Bukhari, and R. P. Sherwood. 1985. The effect of $Cd^2+$ on the biosynthesis of chlorophyll in leaves of barley. Physiologia Plantarum 63, 293-298.   DOI
16 Trewavas, A. J. 1983. Nitrate as a plant hormone. In Jackson, M. B. (ed.), British Plant Growth Regulator Group Monograph Vol. 9, Oxford, British.
17 Van Bruwaene, R., R. Kirchmann, and R. Inpens. 1984. Cadmium contamination in agriculture and zoo technology. Experientia 40, 43-52.   DOI
18 Ramage, M. C. and R. R. Williams. 2002. Inorganic nitrogen requirements during shoot organogenesis in tobacco leaf discs. J. Exp. Bot. 53, 1437-1443.   DOI
19 Quick, W. P., U. Schurr, R. Scheibe, E-D. Schulze, S. R. Rodermel, L. Bogorad, and M. Stitt. 1991. Decreased ribulose-1,5-bisphosphate carboxylase-oxygenase in transgenic tobacco transformed with ‘antisense’ rbcS. I. Impact on photosynthesis in ambient growth conditions. Planta 183, 542-554.
20 Racker, E. 1962. Ribulose diphosphate carboxylase from spinach leaves. Methods Enzymol. 5, 266-270.   DOI
21 Robinson, S. P. and A. R. Portis Jr. 1989. Adenosine triphosphate hydrolysis by purified rubisco activase. Arch. Biochem. Biophys. 268, 93-99.   DOI
22 Roh, K. S. and H. S. Chin. 2005. Cadmium toxicity and calcium effect on growth and photosynthesis of tobacco. J. Life Sci. 15, 453-460.   과학기술학회마을   DOI
23 Roh, K. S., I. S. Kim, B. W. Kim, J. S. Song, H. S. Chung, and S. D. Song. 1997. Decrease in carbamylation of rubisco by high $CO_2$ concentration is due to decrease of rubisco activase in kidney bean. J. Plant Biol. 40, 73-79.   DOI
24 Sandalio, L. M., H. C. Dalurzo, M. Gomez, M. C. Romero-Puertas, and L. A. Del Rio. 2001. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot. 52, 2115-2126.
25 Sanita di Toppi, L. and R. Gabbrielli. 1999. Response to cadmium in higher plants. Environ. Exp. Bot. 41, 105-130.   DOI
26 Sathyanarayana, B. N. and J. Blake. 1994. The effect of nitrogen sources and initial pH of the media with or without buffer on in vitro rooting of jack fruit. pp. 77-82, In Lumsden, P. J., J. R. Nicholas, and W. J. Davies (eds.), Physiology, Growth and Development of Plants in Culture. Kluwer Academic Publishers, Netherlands.
27 Ouariti, O., N. Boussama, M. Zarrouk, A. Cherif, and M. H. Ghorbal. 1997. Cadmium- and copper-induced changes in tomato membrane lipids. Phytochemistry 45, 1343-1350.   DOI
28 Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant 15, 473-497.   DOI
29 Nakano, H., A. Makino, and T. Mae. 1997. The effect of elevated partial pressure of $CO_2$ on the relationship between photosynthetic capacity and content in rice leaves. Plant Physiol. 115, 191-198.
30 Olmos, E., J. R. Martinez-Solano, A. Piqueras, and E. Hellin. 2003. Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). J. Exp. Bot. 54, 291-301.   DOI
31 Padmaja, K., D. D. K. Parsad, and A. R. K. Parsad. 1990. Inhibition of chlorophyll synthesis in Phaseolus vulgaris L. seedlings by cadmium acetate. Photosynthetica 24, 399-404.
32 Pankovic, D., M. Plesnicar, I. Arsenijevic-Maksimovic, N. Petrovic, Z. Sakac, and R. Kastori. 2000. Effects of nitrogen nutrition on photosynthesis in Cd-treated sunflower plants. Ann. Bot. 86, 841-847.   DOI
33 Pietrini, F., M. A. Iannelli, S. Pasqualini, and A. Massacci. 2003. Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel. Plant Physiol. Preview 133, 829-837.   DOI
34 Portis, A. R. Jr. 1990. Rubisco activase. Biochim. Biophys. Acta 1015, 15-28.   DOI
35 Portis, A. R. Jr. 2003. Rubisco activase: Rubisco's catalytic chaperone. Photosynth. Res. 75, 11-27.   DOI
36 Prasad, M. N. V. 1995. Cadmium toxity and tolerance in vascular plants. Environ. Exp. Bot. 35, 525-545.   DOI
37 Ishimaru, K., N. Kobayashi, K. Ono, M. Yano, and R. Ohsugi 2001. Are contents of rubisco, soluble protein and nitrogen in flag leaves of rice controlled by the same genetics. J. Exp. Bot. 52, 1827-1833.   DOI
38 Gerendas, J., Z. Zhu, R. Bendixen, R. G. Ratcliffe, and B. Sattelmacher. 1997. Physiological and biochemical processes related to ammonium toxicity in higher plants. Zeitschrift Pflanzenernährung Bodenkunde 160, 239-251.   DOI
39 Greger, M. and E. Ogren. 1991. Direct and indirect effects of $Cd^2+$ on photosynthesis in sugar beet (Beta vulgaris). Physiol. Plant. 83, 129-135.   DOI
40 Inskeep, W. P. and P. R. Bloom. 1985. Extinction coefficients of chlorophyll a and b in N, N-dimethylformamide and 80% acetone. Plant Physiol. 77, 483-485.   DOI
41 Joy, K. W. 1988. Ammonia, glutamine and asparagine: a carbon nitrogen interface. Can. J. Bot. 66, 2103-2109.
42 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227, 680-685.   DOI
43 Lasa, B., M. Aleu, B. Gonzalez-Moro, C. Lamsfus, and P. M. Aparicio-Tejo. 2000. Effects of low and high levels of magnesium on the response of sunflower plants grown with ammonium and nitrate. Plant Soil 225, 167-174.   DOI
44 Lee, K. R. and K. S. Roh. 2003. Influence of cadmium on rubisco activation in Canavalia ensiformis L. leaves. Biotech. Biopro. Eng. 8, 94-100.   DOI
45 Lucero, H. A., C. S. Andreo, and R. H. Vallejos. 1976. Sulphydryl groups in photosynthetic energy conservation. III. Inhibition of photophosphorylation in spinach chloroplasts by $CdCl_2$. Plant Sci. Lett. 6, 309-313.   DOI
46 Chen, Y. and A. J. Huerta. 1997. Effect of sulfur nutrition on photosynthesis in cadmium-treated barley seedlings. J. Plant Nutrition 20, 845-856.   DOI
47 Machler, F., A. Oberson, A. Grub, and J. Nosberger. 1988. Regulation of photosynthesis in nitrogen-deficient wheat seedlings. Plant Physiol. 87, 46-49.   DOI
48 Baszynski, T., L. Wajda, D. Wolinska, Z. Krupa, and A. Tukendorf. 1989. Photosynthetic activities of cadmium-treated tomato plants. Physiol. Plant 48, 365-370.
49 Chaffei, C., K. Pageau, A. Suzuki, H. Gouia, M. H. Ghorbel, and C. Masclaux-Daubresse. 2004. Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant Cell Physiol. 45, 1681-1693.   DOI
50 Cheng, L. and L. H. Fuchigami. 2000. Rubisco activation state decreases with increasing nitrogen content in apple leaves. J. Exp. Bot. 51, 1687-1694.   DOI
51 Choudhary, M., L. D. Bailey, and C. A. Grant. 1994. Effect of zinc on cadmium concentration the tissue of durum wheat. Can. J. Plant Sci. 74, 549-552.   DOI
52 Chugh, L. K. and S. K. Sawhney. 1999. Photosynthetic activities of Pisum sativum seedlings grown in presence of cadmium. Plant Physiol. Biochem. 37, 297-303.   DOI
53 Di Cagno, R., L. Guidi, L. De Gara, and G. F. Soldatini. 2001. Combined cadmium and ozone treatments affect photosynthesis and ascorbate-dependent defences in sunflower. New Phytologist 151, 627-636.   DOI
54 Evans, J. R. 1983. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.). Plant Physiol. 72, 297-302.   DOI
55 Finkemeier, I., C. Kluge, A. Metwally, M. Georgi, N. Grotjohann, and K. J. Dietz. 2003. Alterations in Cd-induced gene expression under nitrogen deficiency in Hordeum vulgare. Plant Cell Environ. 26, 821-833.   DOI