Browse > Article
http://dx.doi.org/10.5352/JLS.2010.20.10.1468

Sulfate Reduction of Rice Paddy, Foreshore, and Reservoir Soil  

Kim, Min-Jeong (Department. of Biotechnology, Hannam University)
Park, Kyeong-Ryang (Department. of Biotechnology, Hannam University)
Publication Information
Journal of Life Science / v.20, no.10, 2010 , pp. 1468-1475 More about this Journal
Abstract
Sulfate reduction rates (SRR) using $^{35}SO_4^{-2}$, sulfide producing rates (SPR) using gas chromatography, the number of sulfate reducing bacteria (SRB) using the most probable number (MPN) method, and soil components (moisture, ammonium, total nitrogen, total organic carbon, total carbon, total inorganic phosphorus, total phosphorus, and sulfate) using standard methods in the organic/conventional rice paddy soils, cleaned/polluted reservoir soils, and cleaned/polluted foreshore soils were studied with the change of seasons. The average SRR was more related to the number of SRB and soil components (especially nitrogen and phosphorus) than sulfate concentration. SRR was also recorded to be highest in October soil samples. However, SPR was higher in foreshore soils containing a high concentration sulfate than in fresh water soils, and it was also recorded to be higher in the polluted areas than in clean areas. From these results, we can conclude that the SRR and SPR of anaerobic environments were affected by the number of SRB, soil components and temperature.
Keywords
Anaerobic soil; most probable number; soil components; sulfate reducing bacteria; sulfate reduction;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Westermann, P. 1993. Wetland and swamp microbiology. pp. 215-238, In Ford, T. E. (ed.), Aquatic microbiology. Blackwell Sci. Publ., Cambridge, MA.
2 Widdel, F. and T. A. Hansen. 1992. The dissimilatory sulfate- and sulfur reducing bacteria, pp. 583-624, In Balows, A., H. G. Truper, M. Dworkin, W. Harder, and K. H. Schleifer (eds.), The prokaryotes (2nd ed.), Vol. I, Springer, New York, N.Y.
3 Wind, T. and R. Conrad. 1997. Localization of sulfate reduction in planted and unplanted rice field soil. Biogeochemistry 37, 253-278.   DOI
4 Ward, D. M. and M. R. Winefry. 1985. Interactions between methanogenic and sulphate reducing bacteria in sediments. Adv. Aquat. Microbiol. 3, 141-179.
5 Ronald, S. 1982. Oremland and sandra polcin methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuary sediments. Appl. Envir. Microbiol. 44. 1270-1276.
6 Jain, D. K. 1995. Evaluation of the semisolid Postgate’'s B medium for enumerating sulfate-reducing bacteria. J. Microbiol. Methods 22, 27-38.   DOI   ScienceOn
7 Jorgensen, B. B. and F. Bak. 1991. Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark). Appl. Environ. Microbiol. Mar. 57, 847-856.
8 Kim H. S., J. S. Cho, and K. R. Park. 2009. Methane production and T-RFLP patterns of methanogenic bacteria dependent on agricultural methods. Korean J. of Microbiol. 45, 17-25.
9 Smith, R. L. and M. J. Klug. 1981. Electron donors utilized by sulfate reducing bacteria in eutrophic lake sediments. Appl. Environ. Microbiol. 42, 116-121.
10 Sorensen, J., D. Christensen, and B. B. Jørgensen. 1981. Volatile fatty acids and hydrogen as substrates for sulfate reducing bacteria in anaerobic marine sediment. Appl. Environ. Microbiol. 42, 5-11.
11 Tanner, R. S. 1989. Monitoring sulfate-reducing bacteria: Comparison of enumeration media. J. Microbiol. Methods 10, 83-90.   DOI
12 Touzel, J. P. and G. Albagnac. 1983. Isolation and characterization of Methanococcus Mazei strain MC3. FEMS Microbial. Lett. 16, 241-245.   DOI
13 Ulrich, G. A., L. R. Krumholz, and J. M. Suflita. 1997. A rapid and simple method for estimating sulfate reduction. Appl. Environ. Microbiol. 63, 1627-1630.
14 Vester, F. and K. Ingvorsen. 1998. Improved most probable number method to detect sulfate-reducing bacteria with natural media and a radiotracer. Appl. Environ. Microbiol. 64, 1700-1707.
15 Detmers, J., V. Brüchert, K. S. Habicht, and J. Kuever. 2001. Diversity of Sulfur Isotope Fractionations by Sulfate Reducing Prokaryotes. Appl. Environ. Microbiol. 67, 888-894.   DOI
16 Bak, F. and N. Pfennig. 1991. Microbial sulfate reduction in littoral sediment of Lake Constance. FEMS Microbiology Ecology 85, 31-42.   DOI
17 Balch, W. E., G. E. Fox, L. J. Magrum, C. R. Woese, and R. S. Wolfe. 1979. Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43, 260-296.
18 Canfield, D. E. 1989. Sulfate reduction and oxic respiration in marine sediments: Implications for organic carbon preservation in anoxic environments. Deep-Sea Res. 36, 121-138.   DOI
19 Cappenberg, T. E. 1974. Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. Antonie van Leeuwenhoek 40, 285-295.   DOI
20 Castro, H. F. 2003. Microbial ecology of anaerobic terminal carbon mineralization in Everglades soils, with emphasis on sulfate reducing prokaryotic assemblages. Ph. D. Thesis. 27-37.
21 Douglas, G. C. and R. P. Kiene. 1988. Comparison of microbial dynamics in marine and freshwater sediments: Contrasts in Anaerobic Carbon metabolism Limnology and Oceanography 33, 725-749.   DOI
22 Fossing, H. and B. B. Jorgensen. 1989. Measurement of bacterial sulfate reduction in sediments: Evaluation of a single-step chromium reduction method. Biogeochemistry 8, 205-222.
23 Hansen, T. A. 1994. Metabolism of sulfate-reducing bacteria. Antonie van Leeuwenhoek 66, 165-185.   DOI
24 Howarth, R. W. 1984. The ecological significance of sulfur in the energy dynamics of salt marsh and coastal marine sediments. Biogeochemistry 1, 5-27.   DOI
25 Ingvorsen, K., J. G. Zeikus, and T. D. Brock. 1981. Dynamics of Bacterial Sulfate Reduction in a Eutrophic Lake. Appl. Environ. Microbiol. 42, 1029-1036.