Browse > Article
http://dx.doi.org/10.5352/JLS.2010.20.10.1433

Pilot-scale Optimization of Parameters Related to Dissolved Oxygen for Mass Production of Pullulan by Aureobasidium pullulans HP-2001  

Gao, Wa (Department of Medical Bioscience, Graduate School of Donga-A University)
Kim, Yi-Joon (Department of Medical Bioscience, Graduate School of Donga-A University)
Chung, Chung-Han (BK21 Bio-Silver Project of Dong-A University)
Li, Jianhong (College of Plant Science & Technology, Huazhong Agricultural University)
Lee, Jin-Woo (BK21 Bio-Silver Project of Dong-A University)
Publication Information
Journal of Life Science / v.20, no.10, 2010 , pp. 1433-1442 More about this Journal
Abstract
Parameters related to dissolved oxygen for the production of pullulan by Aureobasidium pullulans HP-2001 were optimized in 7 l and 100 l bioreactors. The optimal concentrations of glucose and yeast extract for the production of pullulan were 50.0 and 2.5 g/l, respectively, and its conversion rate from glucose was 37% at a flask scale. The optimal initial pH of the medium and temperature for cell growth were 7.5 and $30^{\circ}C$, whereas those for the production of pullulan were 6.0 and $25^{\circ}C$. The optimal agitation speed and aeration rate for cell growth were 600 rpm and 2.0 vvm in a 7 l bioreactor, whereas those for the production of pullulan were 500 rpm and 1.0 vvm. The production of pullulan with an optimized agitation speed of 500 rpm and aeration rate of 1.0 vvm was 18.13 g/l in a 7 l bioreactor. Maximal cell growth occurred without inner pressure, whereas the optimal inner pressure for the production of pullulan was 0.4 kgf/$cm^2$ in a 100 l bioreactor. The production of pullulan under optimized conditions in this study was 22.89 g/l in a 100 l bioreactor, which was 1.38 times higher than that without inner pressure.
Keywords
Aureobasidium pullulans; pullulan; agitation speed; aeration rate; inner pressure;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Leathers, T. D. 1993. Substrate regulation and specificity of amylases from Aureobasidium strain NRRL Y-12,974. FEMS. Microbiol. Lett. 110, 217-222.   DOI
2 Lee, J. H., J. H. Kim, I. H. Zhu, X. B. Zhan, J. W. Lee, D. H. Shin, and S. K. Kim. 2001. Optimization of conditions for the production of pullulan and high molecular weight pullulan by Aureobasidium pullulans. Biotechnol. Lett. 23, 817-820.   DOI
3 Lee, J. H., J. H. Kim, M. R. Kim, S. M. Lim, S. W. Nam, J. W. Lee, and S. K. Kim. 2002. Effect of dissolved oxygen concentration and pH on the mass production of high molecular weight pullulan by Aureobasidium pullulans. J. Microbiol. Biotechnol. 12, 1-7.
4 Lee, J. W., W. G. Yeomans, A. L. Allen, R. A. Gross, and D. L. Kaplan. 1999. Biosynthesis of novel exopolymers by Aureobasidium pullulans. Appl. Environ. Microbiol. 65, 5265-5271.
5 Lee, N. K., Y. B. Jo, I. H. Jin, C. W. Son, and J. W. Lee. 2009. The effect of potassium phosphate as a pH stabilizer on the production of gellan by Spingmonas paucibilis NK-2000. J. Life Sci. 19, 1033-1038.   DOI
6 Madi, N., B. McNeil, and L. M. Harvey. 1997. Effect of exogenous calcium on morphological development and biopolymer synthesis in the fungus Aureobassidium pullulans. Enzym. Microb. Technol. 21, 102-107.   DOI
7 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426-428.   DOI
8 Moscovici, M., C. Ionescu, C. Oniscu, O. Potea, P. Protopopescu, and L. D. Hanganu. 1996. Improved exopolysaccharide production in fed-batch fermentation of Aureobasidium pullulans with increased impeller speed. Biotechnol. Lett. 18, 787-790.   DOI
9 Guterman, H. and Y. Shabtai. 1996. A self-tuning vision system for monitoring biotechnological process. I. Application to production of pullulan by Aureobasidium pullulans. Biotechnol. Bioeng. 51, 501-510.   DOI
10 Heald, P. and B. Kristiansen. 1985. Synthesis of polysaccharide by yeast-like forms of Aureobasidium pullulans. Biotechnol. Bioeng. 27, 1516-1519.   DOI
11 Jelinek, M., R. Cristescu, E. Axente, T. Kocourek, J. Dybal, J. Remsa, J. Plestil, D. Mihaiescu, M. Albulescu, T. Buruiana, I. Stamatin, I. N. Mihailescu, and D. B. Chrisey. 2007. Matrix assisted pulsed laser evaporation of cinnamate-pullulan and tosylate-pullulan polysaccharide derivative thin films for pharmaceutical applications. Appl. Surf. Sci. 253, 7755-7760.   DOI
12 Jiang, L. 2010. Optimization of fermentation conditions for pullulan production by Aureobasodium pullulans using response surface methodology. Carbohyr. Polym. 79, 414-417   DOI
13 Jo, K. I., Y. J. Lee, B. K. Kim, B. H. Lee, C. H. Chung, S. W. Nam, S. K. Kim, and J. W. Lee. 2008. Pilot-scale production of carboxymethylcellulase from rice hull by Bacullus amyloliquefaciens DL-3. Biotechnol. Bioprocess Eng. 13, 182-188.   DOI
14 Jung, D. Y., Y. S. Cho, C. H. Chung, D. I. Jung, K. Kim, and J. W. Lee. 2001. Improved production of curdlan with concentrated cells of Agrobacterium sp. Biotechnol. Bioprocess Eng. 6, 107-111.   DOI
15 Kondratyeva, T. F. 1981. Production of the polysaccharide pullulan by Aureobasidium (Pullularia) pullulans. Uspechi Microbiol. 16, 175-192.
16 Lacroix, C., A. Le Duy, G. Noel, and L. Choplin. 1985. Effect of pH on the batch fermentation of pullulan from sucrose medium. Biotechnol. Bioeng. 27, 202-207.   DOI
17 Elibol, M. and D. Ozer. 2000. Influence of oxygen transfer on lipase production by Rhizopus arrhizus. Process Biochem. 36, 325-329.   DOI
18 Catley, B. J., A. Ramsay, and C. Servis. 1986. Observations on the structure of fungal extracellular-polysaccharide, pullulan. Carbohydr. Res. 153, 79-86.   DOI
19 Chi, Z. and S. Zhao. 2003. Optimization of medium and cultivation conditions for pullulan production by a new pullulan-producing yeast strain. Enzym. Microb. Technol. 33, 206-211.   DOI
20 Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetic method for determination of sugars and related substances. Anal. Chem. 28, 350-356.   DOI
21 Feng, Y., Z. He, S. L. Ong, J. Hu, Z. Zhang, and W. J. Ng. 2003. Optimization of agitation, aeration, and temperature conditions for maximum $\beta$-mannase production. Enzym. Microb. Technol. 32, 282-289.   DOI
22 Gao, W., Y. J. Kim, C. H. Chung, J. Li, and J. W. Lee. 2010. Optimization of mineral salts in medium for enhanced production of pullulan by Aureobasodium pullulans HP-2001 using orthogonal array method. Biotechnol. Bioprocess Eng. (in press).
23 Seo, H. P., C. W. Son, C. H. Chung, D. I. Jung, S. K. Kim, R. A. Gross, D. L. Kaplan, and J. W. Lee. 2004. Production of high molecular weight pullulan by Aureobasisium pullulans HP-2001 with soybean pomace as a nitrogen source. Bioresour. Technol. 95, 293-299.   DOI
24 Tarabasz-Szymanska, L., E. Galas, and T. Pankiewicz. 1999. Optimization of productivity of pullulan by means of multivariable linear regression analysis. Enzym. Microb. Technol. 24, 276-282.   DOI
25 Giavasis, I., L. M. Harvey, and B. McNeil. 2006. The effect of agitation and aeration on the synthesis and molecular weight of gellan batch cultures of Sphingomonas paucimobilis. Enzym. Microb. Technol. 38, 101-108.   DOI
26 Pollock, T. J., L. Thorne, and R. W. Armentrout. 1992. Isolation of new Aureobasidium strains that produce high molecular-weight pullulan with reduced pigmentation. Appl. Environ. Microbiol. 58, 877-883.
27 Qian, X., Y. Zhu, J. W. Lee, and X. Zhan. 2001. Kinetic studies on production of pullulan by Aureobasidium pullulans. J. Life Sci. 11, 116-119.
28 Ronen, M., H. Guterman, and Y. Shabtai. 2002. Monitoring and control of pullulan producing using vision sensors. J. Biochem. Biophys. Meth. 51, 243-249.   DOI
29 Roukas, T. and M. Liakopoulous-Kyriakides. 1999. Production of pullulan from beet molasses by Aureobasidium pullulans in a stirred tank fermentor. J. Food. Eng. 40, 89-94.   DOI
30 Seo, H. P., C. H. Chung, S. K. Kim, R. A. Gross, D. L. Kaplan, and J. W. Lee. 2004. Mass production of pullulan with optimized concentrations of carbon and nitrogen sources by Auriebaisdium pullulans HP-2001 in a 100L bioreactor with the inner pressure. J. Microbiol. Biotechnol. 14, 237-242.
31 Seo, H. Y., K. I. Jo, C. W. Son, J. K. Yang, C. H. Chung, Nam, S. W., S. K. Kim, and J. W. Lee. 2006. Continuous production of pullulan by Aureobasidum pullulans HP-2001 with feeding of high concentration of sucrose. J. Microbiol. Biotechnol. 16, 374-380.
32 Singh, P. S., G. K. Saini, and J. F. Kennedy. 2008. Pullulan: microbial sources, production and applications. Carbohydr. Polym. 73, 515-531.   DOI
33 Simon, L., B. Bouchet. C. Caye-Vaugien, and D. J. Gallant. 1995. Pullulan elaboration and differentiation of the resting forms in Aureobasidium pullulans. Can. J. Microbiol. 40, 35-45.
34 Lazaridou, A., T. Roukas, C. G. Biliaderis, and H. Vaikousi. 2002. Characterization of pullulan produced from beet molasses by Aureobasidium pullulans in a stirred tank reactor under varying agitation. Enzym. Microb. Technol. 31, 122-132.   DOI