Browse > Article
http://dx.doi.org/10.5352/JLS.2009.19.8.1067

Expression of Stromal Derived Factor-1 is Upregulated In Macrophages during Thymic Regeneration in Adult Rat  

Park, Hyun-Joo (Department of Oral Physiology, School of Dentistry, Pusan National University)
Kim, Jong-Gab (Department of Physiology, Pusan National University)
Yoon, Sik (Department of Anatomy, School of Medicine, Pusan National University)
Bae, Moon-Kyoung (Department of Oral Physiology, School of Dentistry, Pusan National University)
Bae, Soo-Kyung (Department of Physiology, Pusan National University)
Publication Information
Journal of Life Science / v.19, no.8, 2009 , pp. 1067-1072 More about this Journal
Abstract
Stromal derived factor-1 (SDF-1 or CXCL12), one of the CXC chemokines, is widely expressed in many tissues, including the thymus. The thymus can regenerate to its normal mass within 14 days after acute involution induced by cyclophosphamide (CY) in adult rats. Despite the established role of SDF-1 signaling in the development of T and B lymphocytes in the thymus, it has not yet been associated with the regeneration of the adult thymus. The purpose of this study was to investigate whether SDF-1, which is expressed in thymic stromal cells, is modulated during thymic regeneration in adult rats. Here, we showed that SDF-1 mRNAs were expressed in high levels in the thymocyte and thymic stromal cells at day 7 of the CY model. SDF-1 protein was shown to be present at the cortex-medulla junction, paraseptum and within the thymic medulla. Double-immunofluorescence for SDF-1 and ED-1 showed that strong SDF-1 expression was detected in the macrophages of the medulla region displaying immunoreactivity for ED-1 during thymus regeneration. Taken together, our results demonstrated that SDF-1 expression increased in regenerating thymic macrophages, suggesting the roles of SDF-1 as a chemo-attractant for damaged cells produced in the process of thymic regeneration after acute involution induced by CY.
Keywords
SDF-1; macrophage; thymic regeneration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yoon, S., Y. H. Yoo, B. S. Kim, and J. J. Kim. 1997. Ultrastructural alterations of the cortical epithelial cells of the rat thymus after cyclophosphamide treatment. Histol. Histopathol. 12, 401-413
2 Zaitseva, M., T. Kawamura, R. Loomis, H. Goldstein, A. Blauvelt, and H. Golding. 2002. Stromal-derived factor 1 expression in the human thymus. J. Immunol. 15, 2609-2617
3 Faas, S. F., J. L. Rothsteiin, B. L. Kreider, G. Rovera, and B. B. Knowles. 1993. Phenotypically diverse mouse thymic stromal cell lines which induce proliferation and differentiation of hematopoietic cells. Eur. J. Immunol. 23, 1201-1214   DOI   ScienceOn
4 Kim, C. H., L. M. Pelus, J. R. White, and H. E. Broxmeyer. 1998. Differential chemotactic behavior of developing T cells in response to thymic chemokines. Blood 91, 4434-4443
5 Klein, R. S. and J. B. Rubin. 2004. Immune and nervous system CXCL12 and CXCR4: parallel roles in patterning and plasticity. Trends Immunol. 25, 306-314   DOI   ScienceOn
6 Kucia, M., K. Jankowski, R. Reca, M. Wysoczynski, L. Bandura, D. J. Allendorf, J. Zhang, J. Ratajczak, and M. Z. Ratajczak. 2004. CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J. Mol. Histol. 35, 233-245   DOI   ScienceOn
7 Luster, A. D. 1998. Chemokines-chemotactic cytokines that mediate inflammation. New England Journal of Medicine 338, 436-445   DOI   ScienceOn
8 Milicevic, N. M., Z. Milicevic, O. Piletic, S. Mujovic, and V. Ninkov. 1984. Patterns of thymic regeneration in rats after single or divided doses of cyclophosphamide. J. Comp. Pathol. 94, 197-202   DOI   ScienceOn
9 Miller, J. P. 1961. Immunological function of the thymus. Lancet. 2, 748-749
10 Nagasawa, T., H. Kikutani, and T. Kishimoto. 1994. Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc. Natl. Acad. Sci. 91, 2305-2309   DOI   ScienceOn
11 Park, H. J., M. N. Kim, J. G. Kim, Y. H. Bae, M. K. Bae, H. J. Wee, T. W. Kim, B. S. Kim, J. B. Kim, S. K. Bae, and S. Yoon. 2007. Up-regulation of VEGF expression by NGF that enhances reparative angiogenesis during thymic regeneration in adult rat. BBA - Molecular Cell Research. 1773, 1462-1472   DOI
12 Anderson, G., N. C. Moore, J. J. Owen, and E. J. Jenkinson. 1996. Cellular interactions in thymocyte development. Annu. Rev. Immunol. 14, 73-99   DOI   ScienceOn
13 Andreas, S. 2008. Chemokines in vascular dysfunction and remodeling. Arterioscler Thromb. Vasc. Biol. 28, 1950-1959   DOI   ScienceOn
14 Shanker, A. 2004. Is thymus redundant after adulthood? Immunol. Lett. 91, 79-86   DOI   ScienceOn
15 Ratajczak, M. Z., E. Zuba-Surma, M. Kucia, R. Reca, W. Wojakowski, and J. Ratajczak. 2006. The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia 20, 1915-1924   DOI   ScienceOn
16 Ritter, M. A. and D. B. Palmer. 1999. The human thymic microenvironment: new approaches to functional analysis. Semin Immunol. 11, 13-21   DOI   ScienceOn
17 Sakihama, H., T. Masunaga, K., T. Hashimoto, M. Inobe, S. Todo, and T. Uede. 2004. Stromal cell-derived factor-1 and CXCR4 interaction is critical for development of transplant arteriosclerosis. Circulation 110, 2924-2930   DOI   ScienceOn
18 Taub, D. D. and D. L. Longo. 2005. Insights into thymic aging and regeneration. Immunol. Rev. 205, 72-93   DOI   ScienceOn
19 Wald, O., O. Pappo, R. Safadi, M. Dagan-Berger, K. Beider, H. Wald, S. Franitza, I. Weiss, S. Avniel, P. Boaz, J. Hanna, G. Zamir, A. Eid, O. Mandelboim, U. Spengler, E. Galun, and A. Peled. 2004. Involvement of the CXCL12/CXCR4 pathway in the advanced liver disease that is associated with hepatitis C virus or hepatitis B virus. Eur. J. Immunol. 34, 1164-1174   DOI   ScienceOn
20 Campbell, J. J., J. Pan, and E. C. Butcher. 1999. Cutting edge: developmental switches in chemokine responses during T cell maturation. J. Immunol. 163, 2353-2357   DOI   ScienceOn