Browse > Article
http://dx.doi.org/10.5352/JLS.2009.19.8.1003

Phylogenetic Study of Genus Haliotis In Korea by Internal Transcribed Spacer Sequence (ITS)  

Huh, Man-Kyu (Department of Molecular Biology, Dongeui University)
Kim, Jung-Ho (Biological Education, Busan National University)
Moon, Du-Ho (Biological Education, Busan National University)
Publication Information
Journal of Life Science / v.19, no.8, 2009 , pp. 1003-1008 More about this Journal
Abstract
Abalone (genus Haliotis) is a woody species with a long life span that is primarily distributed throughout the world, including Asia. This species is regarded as a very important marine gastropod mollusk in Korea and China, and also in food industries around the world. We evaluated a representative sample of the five species with nuclear ribosomal DNA internal transcribed spacer sequences (ITS) to estimate genetic relationships within the genus. Aligned nucleotide sequences of the length of the 5.8S subunit of all taxa of Haliotis were found to constant of 160 bp nucleotides. However, aligned nucleotide sequences of the length of ITS1 were varied within genus Haliotis, varying from 272 in H. diversicolor aquatilis to 292 in H. discus hannai. Aligned nucleotide sequences of the length of ITS2, especially, vary from 722 in H. diversicolor aquatilis to 752 in H. sieboldii. Total alignment length is 763 positions, of which 78 are parsimony-informative, 57 variable but parsimony-uninformative, and 459 constant characters. H. discus hannai was similar to H. discus, while H. diversicolor aquatilis was more distinct. ITS analysis may be useful in germ-plasm classification several taxa of genus Haliotis.
Keywords
Abalone; Haliotis; ITS; phylogenetic analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Schl$\"{}$tter, C., M. T. Hauser, A. van Haesler, and D. Tautz. 1994. Comparative evolutionary analysis of rRNA ITS regions in Drosophila. Mol. Biol. Evol. 11, 513-522
2 Swanson, W. J. and V. D. Vacquier. 1998. Concerted evolution in an egg receptor for a rapidly evolving abalone sperm protein. Science 281, 710-712   DOI   ScienceOn
3 Adams, R. P., A. E. Schwarzbach, and R. N. Pandey. 2003. The concordance of terpenoid, ISSR, and RAPD markers, and ITS sequences data sets among genotypes: an example from Juniperus. Biochem. System. and Ecol. 31, 375-387   DOI   ScienceOn
4 Baldwin, B. G. 1993. Molecular phylogenetics of Calcydenia (Compositae) based on ITS sequences of nuclear ribosomal DNA: Chromosomal and morphological evolution reexamined. Am. J. Bot. 80, 222-238   DOI   ScienceOn
5 Coleman, A. W., L. Jaeenicke, and R. C. Starr. 2001. Genetics and sexual behavior of the pheromone producer, Chlamydomonas allensworthii (Chlorophyceae). J. Phycol. 37, 1-5   DOI   ScienceOn
6 Coleman, A. W. and V. D. Vacquier. 2002. Exploring the phylogenetic utility of ITS sequences for animals: a test case for abalone (Haliotis). J. Mol. Evol. 54, 246-257   DOI   ScienceOn
7 Degnan, S. M., I. Imron, D. L. Geiger, and B. M. Degnam. 2006. Evolution in temperate and tropical seas: disparate patterns in southern hemisphere abalone (Mollusca: Vetigastropod: Haliotidae). Mol. Phylogen. Evol. 41, 249-256   DOI   ScienceOn
8 Doyle, J. J. and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissues. Phyto. Bull. 19, 11-15
9 Dubouzet, J. G. and K. Shinoda. 1999. Relationships among old and New world Alliums according to ITS DNA sequence analysis. Theor. Appl. Genet. 98, 422-433   DOI   ScienceOn
10 Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) Version 3.5s, Distributed by the Author. Department of Genetics, Univ. Washington, seattle
11 Geiger, D. L. 1998. Recent genera and species of the family Haliotidae (Gastropoda: Vetigastropoda). The Nautilus 111, 85-116
12 Geiger, D. L. 1999. Ph. D. dissertation, University of Southern California, Los Angeles, CA, pp. 423
13 White, T. J., T. Bruns, S. Lee, and J. Taylor. 1999. Amplification and direct sequencing of fungal ribosomal genes for phylogenetics, pp. 315-322, In Innis M. A., D. H. Gelfand, J. J. Sninsky, and T. J. White (eds.), PCR Protocols: A Guide to Methods and Applications, New York Academic press
14 Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596-1599   DOI   ScienceOn
15 Vacquier, V. D. and Y. H. Lee. 1993. Abalone sperm lysin: unusual mode of evolution of a gamete recognition protein. Zygote 1, 181-196
16 Wrischnik, L. A., R. G. Higuchi, M. Stoneking, H. A. Erlich, N. Arnheim, and A. C. Wilson. 1987. Length mutations in human mitochondrial DNA: direct sequencing of enzymatically amplified DNA. Nucleic Acids Res. 15, 529-542   DOI   ScienceOn
17 Lyon, J. D. and V. D. Vacquier. 1999. Interspecies chimeric sperm lysins identify regions mediating species-specific recognition of the abalone egg vitelline envelope. Dev. Biol. 214, 151-159   DOI   ScienceOn
18 Hoshikawa, H, Y. Sakai, and A. Kijima. 1998. Growth characteristics of the hybrid between abalone, Haliotis kamtschatkana Jonas, and ezo abalone, H. discus hannai Ino, under high and low temperature. J. Shellfish Res. 17, 673-677
19 Leighton, D. L. and C. A. Lewis. 1982. Experimental hybridization in abalones. Int. J. Invert. Reprod. 5, 273-282   DOI
20 Lindberg, D. R. 1992. Evolution, distribution and systematics of Haliotidae, pp. 3-19, In Shepherd, S. A., M. J. Tegner and G. del Proo (eds.), Abalone of the World: Biology, Fisheries and Culture. Blackwell Scientific, London
21 Metz, E. C., R. Robles-Sikisaka, and V. D. Vaquier. 1998. Nonsynonymous substitution in abalone sperm fertilization genes exceeds substitution in introns and mitochondrial DNA. Proc. Natl. Acad. Sci. USA 95, 10676-10681   DOI   ScienceOn
22 Oliverio, M., M. Cervelli, and P. Mariottini. 2002. ITS2 rRNA evolution and its congruence with the phylogeny of muricid neogastropods (Caenogastropoda, Muriocoidea). Mol. Phylogen. Evol. 25, 63-69   DOI   ScienceOn
23 Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425