Browse > Article
http://dx.doi.org/10.5352/JLS.2009.19.3.311

Phylogeny Study of Genus Pelvetia in Korea by Internal Transcribed Spacer Sequence (ITS)  

Lee, Bok-Kyu (Department of Molecular Biology, Dongeui University)
Huh, Man-Kyu (Department of Molecular Biology, Dongeui University)
Choi, Joo-Soo (Department of Molecular Biology, Dongeui University)
Cho, Sung-Hyun (Department of Biology, Pennsylvania State University)
Publication Information
Journal of Life Science / v.19, no.3, 2009 , pp. 311-316 More about this Journal
Abstract
The brown algae, or phaeophytes, are a large group of multicellular algae, including many notable types of seaweed. We analysed intra- and interspecific phylogenic studies within the genus Pelvetia in Korea and compared them with results of both same and different species in GenBank. The sequences for P. babingtonii in Korea were generally similar to those for P. babingtonii AF102957, and the sequences of P. siliquosa in Korea were also similar to those of P. siliquosa AF102958. Sequence variation within the Pelvetia is mostly due to nucleotide substitutions, although several small indels and some large indels can be found. Another source of sequence divergence is length variation due to stretches of short repeats that occur at the ITS1 or ITS2 in all the Pelvetia. NJ analysis consists mainly of two clades. One of them contains P. canaliculata and P. limitata, and is sister to the rest of the genus (P. siliquosa, P. compressa, and P. babingtonii). P. babingtonii is not grouped one clade. In the MP analysis, ten accessions or populations were fully resolved and all accessions from the same species formed with 99% or 100% bootstrap supports.
Keywords
ITS; phylogenic analyses; Pelvetia babingtonii; P. siliquosa;
Citations & Related Records
연도 인용수 순위
  • Reference
1 White, T. J., T. Bruns, S. Lee, and J. Taylor. 1999. Amplification and direct sequencing of fungal ribosomal genes for phylogenetics, pp. 315-322, In Innis M. A., D. H. Gelfand, J. J. Sninsky, and T. J. White (eds.), PCR Protocols: A Guide to Methods and Applications, New York Academic Press
2 Lee, Y. K., H. S. Yoon, T. Motomura, Y. J. Kim, and S. M. Boo. 1999. Phylogenetic relationships between Pelvetia and Pelvetiopsis (Fucaceae, Phaeophyta) inferred from sequences of the RUBISCO spacer region. Eur. J. Phycol. 34, 205-211   DOI   ScienceOn
3 Marko, P. B. 2004. What’s larvae to do with it? Disparate patterns of postglacial population structure in two benthic marine gastropods with identical dispersal potential. Mol. Ecol. 13, 597-611   DOI   ScienceOn
4 Munda, I. M. 1976. Some aspects of the benthic algal vegetation of the South Icelandic coastal area. Res. Inst. Nedri as Hveragerdi. Icei. Bull. 25, 1-69
5 Rice, E. L., T. J. Kenchington, and A. R. O. Chapman. 1985. Intraspecific geographic-morphological variation patterns in Fucus distichus and F. evanescens. Marine Biology 88, 207-215   DOI
6 Rice, E. L. and A. R. O. Chapman. 1985. A numerical taxonomic study of Fucus distichus L. emend. Powell (Phaeophyta). J. Mar. Biol. Ass. U.K. 65, 433-459   DOI
7 Russell, G. 1978. Environment and form in the discrimination of taxa in brown algae. pp. 339-369, In Irvine, D. E. G. and J. H. Price (eds.), Modem Approaches to the Taxonomy of Red and Brown Algae, Academic Press, London
8 Russell, G. and A. H. Fielding. 1981. Individuals, populations and communities. Bot. Monogr. 17, 393-420
9 Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425   DOI   ScienceOn
10 Serrao, E. A., L. A. Alice, and S. H. Brawley. 1999. Evolution of the Fucaceae (Phaeophyceae) inferred from nrDNA-ITS. J. Phycol. 35, 382-394   DOI   ScienceOn
11 Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596-1599   DOI   ScienceOn
12 Coyer, J. A., A. F. Peters, W. T. Stam, and J. L. Olsen. 2003. Post-ice age recolonization and differentiation of Fucus serratus L. (Phaeophyceae; Fucaceae) populations in Northern Europe. Mol. Ecol. 12, 1817-1829   DOI   ScienceOn
13 Coyer, J. A., G. Hoarau, M. O. Secq, W. T. Stam, and J. L. Olsen. 2006. A mtDNA-based phylogeny of the brown algal genus Fucus (Heterokontophyta; Phaeophyta). Mol. Phylogen. Evol. 39, 209-222   DOI   ScienceOn
14 Davison, I. R., L. E. Johnson, and S. H. Brawley. 1993. Sublethal stress in the intertidal zone: tidal emersion inhibits photosynthesis and retards development in embryos of the brown alga Pelvetia fastigiata. Oecologia 96, 483-492   DOI   ScienceOn
15 Dayton, P. K. 1973. Dispersion, dispersal, and persistence of the annual intertidal alga, Postelsia palmaeformis Ruprecht. Ecology 54, 433-438   DOI   ScienceOn
16 Lee, Y. K. 1997. Phylogenetic relationships among Pelvetia and Pelvetiopsis species (Fucaceae, Phaeophyta) based on rubisco spacer sequences. Master’s thesis, Chungnam National University
17 Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) version 3.5s, Distributed by the author. Department of Genetics, Univ. Washington, Seattle
18 Leclerc, M. C., V. Barriel, G. Lecointre, and B. de Reviers. 1998. Low divergence in rDNA ITS sequences among five species of Fucus (Phaeophyceae) suggests a very recent radiation. J. Mol. Evol. 46, 115-120   DOI   ScienceOn
19 Lee, W. L., H. S. Yoon, and S. M. Boo. 1998. Phylogenetic relationships of Pelvetia and Pelvetiopsis (Phaerophyceae) based on small subunit ribosomal DNA sequences. J. Plant Biol. 41, 103-109   DOI   ScienceOn
20 Anderson, E. K. and W. J. North. 1966. In situ studies of spore production and dispersal in the giant kelp Macrocystis. Proc. Rot. Seaweed Symp. 5, 73-86
21 Bergstrom, L., R. B. Jonsson, and L. Kautsky. 2006. Genetic and morphological identification of Fucus radicans sp. nov. (Fucales, Phaeophyceae) in the Brackish Baltic Sea. J. Phycol. 41, 1025-1038