Browse > Article
http://dx.doi.org/10.5352/JLS.2009.19.2.179

Antioxidative Activity of Zinc-Enriched Saccharomyces cerevisiae FF-10 in In vitro Model Systems  

Cha, Jae-Young (Technical Research Institute, Daesun Distilling Co., Ltd.)
Park, Bo-Kyung (Department of Biotechnology, Dong-A University)
Ahn, Hee-Young (Department of Biotechnology, Dong-A University)
Eom, Kyung-Eun (Department of Biotechnology, Dong-A University)
Jun, Bang-Sil (Department of Biotechnology, Dong-A University)
Cho, Young-Su (Department of Biotechnology, Dong-A University)
Publication Information
Journal of Life Science / v.19, no.2, 2009 , pp. 179-184 More about this Journal
Abstract
Zinc is an essential trace element for human and plays an important biological role in antioxidant properties. We have been reported that zinc-enriched S. cerevisiae FF-10 contained 392 mg% in the YM basal and 3,193 mg% in the YM optimal medium. Antioxidative activity of FF-10 was tested in vitro models by DPPH (${\alpha},{\alpha}-diphenyl-${\beta}$-picrylhydrazyl) radical scavenging activity and lipid peroxidation using linoleic acid (LA) and rat liver homogenate. DPPH radical scavenging activity was higher in the cell-free extract of FF-10 cultured in the YM optimal medium (YMOM) than that in the YM basal medium (YMBM). The inhibition activity of lipid peroxidation using rat liver homogenate was shown in the following order: BHT > YMOM > YMBM and these values were dose dependently. The lipid peroxidation of the control mixture by ferric thiocyanate and TBA methods using LA was increased rapidly as typical peroxidation curve of LA from one day and the antioxidation activity of the cell free extracts by cultivating FF-10 in the YMOM were higher than that of the YMBM. Result of this study indicate that the cell-free extracts containing a high intercellular zinc of S. cerevisiae FF-10 cultured in YMOM showed strong antioxidation capacities in DPPH radical scavenging activity and lipid peroxidation using LA and rat liver homogenate.
Keywords
Antioxidation; zinc; S. cerevisiae FF-10; DPPH; lipid peroxidation;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Tallman, D. L. and C. G. Taylor. 2003. Effects of dietary fat and zinc on adiposity, serum leptin and adipose fatty acid composition in C57BL/6J mice. J. Nutr. Biochem. 14, 17-23   DOI   ScienceOn
2 Xin, Z., K. S. Song, and M. R. Kim. 2004. Antioxidant activity of salad vegetables grown in Korean. J. Food Sci. Nutr. 9, 289-294   DOI
3 Sandstead, H. H. 1995. Is zinc deficiency a public health problem? Nutr. 11, 87-92
4 Shon, M. H., J. Y. Cha, C. H. Lee, S. H. Park, and Y. S. Cho. 2007. Protective effect of administrated glutathioneenriched Saccharomyces cerevisiae FF-8 against carbon tetrachloride (CCl4)-induced hepatotoxicity and oxidative stress in rats. Food Sci. Biochenol. 16, 967-974
5 Lee, C. H., J. Y. Cha, H. J. Lee, Y. C. Lee, Y. L. Choi, and Y. S. Cho. 2005. The antioxidative activity of glutathioneenriched extract from Saccharomyces cerevisiae FF-8 in vitro model system. J. Life Sci. 15, 819-825   DOI
6 Lee, S., W. G. Kim, E. S. Kim, I. J. Ryoo, H. K. Lee, J. N. Kim, S. H. Jung, and I. D. Yoo. 2005. Synthesis and melanin biosynthesis inhibitory activity of (±)-terrein produced by Penicillium sp. 20135. Bioorg. Med. Chem. Lett 15, 471-473   DOI   ScienceOn
7 Maia, R., F. Debora, D. Slivia, and C. Nestor. 2007. Copper- and zinc-enriched mycellium of Agricus blazei Murrill: Bioaccumulation and bioavailability. J. Med. Food 10, 175-183   DOI   ScienceOn
8 Ohkawa, H., N. Ohishi, and K. Yagi. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351-358   DOI   ScienceOn
9 Mungan, A. G., M. Can, S. Açikgöz, E. Eştürk, and C. Altinyazar. 2006. Lipid peroxidation and homocysteine levels in Behçet's disease. Clin. Chem. Lab. Med. 44, 1115-1118
10 Murakami, M. and T. Hirano. 2008. Intracellular zinc homeostasis and zinc signaling. Cancer Sci. 99, 1515-1522   DOI   ScienceOn
11 Pacifici, R. E. and K. J. Davies. 1991. Protein, lipid, and DNA repair systems in oxidative stress: the free-radical theory of aging revisited. Gerontol. 37, 166-180   DOI   ScienceOn
12 Powell, S. 2000. The antioxidant properties of zinc. J. Nutr. 130, 1447S-1454S
13 Prasad, A. S., B. Bao, F. W. Beck, O. Kucuk, and F. H. Sarkar. 2004. Antioxidant effect of zinc in humans. Free Radic. Biol. Med. 37, 1182-1190   DOI   ScienceOn
14 Rashid, M. H., F. Kato, and A. Murata. 1992. Effect of microorganism on the peroxidation of lipid and fatty acid composition of fermented fish meal. Biosci. Biotechnol. Biochem. 56, 1058-1061   DOI
15 Farmer, E. H., A. Bloomfield, A. Sundralingan, and D. A. Sutton. 1942. The couse and mechanism of autoxidation reactions in olefinic and polyolefinic substances, including rubber. Trans Faraday Soc. 38, 348-356   DOI
16 Goel, A., V. Dani, and D. K. Dhawan. 2005. Protective effects of zinc on lipid peroxidation, antioxidant enzymes and hepatic histoarchitecture in chlorpyrifos-induced toxicity. Chem. Biol. Interact 156, 131-140   DOI   ScienceOn
17 Halliwell, B. and J. M. C. Gutteridge. 1990. Role of free radicals and catalyticmetal ions in human disease: an overview. Methods in Enzymol. 186, 1-85   DOI
18 Kenko Eiyo Joho Kenky-Kai. 1999. Sixth Revised Recommended Daily Allowances and Dietary Refernce Intake. Daiichi Shuppan, Tokyo, Japan
19 Ho, E. and B. Ames. 2003. Zinc deficiency induces DNA damage and compromises DNA repair signal pathways in C6 glioma cells. J. Nutr. 133, (Supple) 203E-282E
20 Kato, F., I. Nakazato, A. Murata, S. Okamoto, and Y. Yone. 1986. Utilization of waste fish treatment with microorganisms. Part II. Use of waste fish from large scale production of fermented fish meal and its feed efficiency. Nippon Nogeikagaku Kaishi 60, 287-293   DOI
21 Kim, W. G., J. P. Kim, and I. D. Yoo. 1996. Benzastatins A, B, C, and D: new free radical scavengers from Streptomyces nitrosporeus 30643. II. Structural determination. J. Antibiotics 49, 26-30   DOI   ScienceOn
22 Kinosita, M., N. Hory, K. Aida, T. Sugawara, and M. Ohnish. 2007. Prevention of melanin formation by yeast cerebroside in B16 melanoma cells. J. Oleo Sci. 56, 645-648   DOI   ScienceOn
23 Kumar, N., R. P. Verma, L. P. Singh, V. P. Varshney, and R. S. Dass. 2006. Effect of different levels and sources of zinc supplementation on quantitative and qualitative semen attributes and serum testosterone level in crossbred cattle (Bos indicus x Bas Taurus) bulls. Reprod. Nutr. Dev. 46, 663-675   DOI   ScienceOn
24 Cha, J. Y., H. J. Kim, and Y. S. Cho. 2000. Effects of water- soluble extract from leaves of Morus alba and Cudrania tricuspidata on the lipid peroxidation in tissues of rats. J. Korean Soc. Food Sci. Nutr. 29, 531-536
25 Cha, J. Y., J. S Heo, B. K. Park, and Y. S. Cho. 2008. Effect of zinc-enriched yeast supplementation on serum zinc and testosterone concentrations in ethanol feeding rats. J. Life Sci. 18, 947-951
26 Cha, J. Y. and Y. S. Cho. 1999. Effect of potato polyphenolics on lipid peroxidation in rats. J. Korean Soc. Food Sci. Nutr. 28, 1131-1136
27 Cha, J. Y., J. S. Heo, and Y. S. Cho. 2008. Effect of zinc-enriched yeast FF-10 strain on the alcoholic hepatotoxicity in alcohol feeding rats. Food Sci. Biotechnol. 17, 1207-1213
28 Cha, J. Y, H. J. Kim, B. S. Jun, J. C. Park, M. Ok, and Y. S. Cho. 2003. Antioxidative activities and produced condition of antioxidative substance by Bacillus sp. FF-7. J. Korean Soc. Agric. Chem. Biotechnol. 46, 165-170
29 Cha, J. Y., J. S. Heo, J. W. Kim, S. W. Lee, and Y. S. Cho. 2008. Isolation and identification of zinc-enriched yeast Saccharomyces cerevisiae FF-10 from the tropical fruit rambutan. J. Life Sci. 18, 144-453
30 Cha, J. Y. and Y. S. Cho. 2001. Antioxidative activity of extracts from fruit of Cudrania tricuspiata. J. Krean Soc. Food Sci. Nutr. 30, 547-551
31 Daz-Gmez, N. M., E. Domnech, F. Barroso, S. Castells, C. Cortabarra and A. Jimnez. 2003. The effect of zinc supplementation on linear growth, body composition, and growth factors in preterm infants. Pediatrics 111, 1002-1009   DOI   ScienceOn
32 Decker, E. and H. Faraji. 1990. Inhibition of lipid oxidation by carnosine. JAOCS 67, 650-652   DOI
33 Abe, N., T. Murata, and A. Hirota. 1998. Novel DPPH radical scavengers, bisorbicillinol and demethyltrichodimerol, from a fungus. Biosci. Biothecnol. Biochem. 62, 661-666   DOI   ScienceOn
34 Bertelsen, G., C. Christophersen, P. H. Nielsen, H. L. Madsen, and P. Stadel. 1995. Chromatographic isolation of antioxidants guided by a methyl linoleate assay. J. Agric. Food Chem. 43, 1272-1275   DOI   ScienceOn
35 Al-Saikhan, M. S., L. R. Howard, and J. C. Miller Jr. 1995. Antioxidant activity and total phenolics in different genotypes of potato (Solanum tuberosum L.). J. Food Sci. 60, 341- 343   DOI   ScienceOn
36 Baltaci, A. K., R. Mogulkoc, and A. Ozturk. 2006. Testosterone and zinc supplementation in castrated rats: Effects on plasma leptin levels and relation with LH, FSH and testosterone. Life Sci. 78, 746-752   DOI   ScienceOn
37 Bao, B., A. S. Prasad, F. W. Beck, D. Snell, A. Suneja, F. H. Sarkar, N. Doshi, J. T. Fitzgerald, and P. Swerdlow. 2008. Zinc supplementation decreases oxidative stress, incidence of infection, and generation of inflammatory cytokines in sickle cell disease patients. Transl. Res.152, 67-80   DOI   ScienceOn
38 Blois, M. S. 1958. Antioxidant determination by the use of a stable free radical. Natu. 26, 1199-1200
39 Brand-Williams, W., M. E. Cuvelier, and C. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol. 28, 25-30   DOI   ScienceOn
40 Cha, J. Y., J. C. Park, B. S. Jeon, Y. C. Lee, and Y. S. Cho. 2004. Optimal fermentation conditions for enhanced glutathione production by Saccharomyces cerevisiae FF-8. J. Microbiol. 42, 51-55