Browse > Article
http://dx.doi.org/10.5352/JLS.2009.19.12.1787

Over-expression of NSAID Activated Gene-1 by Caffeic Acid Phenethyl Ester  

Jang, Min-Jeong (Dept. of Biological Sciences, Andong National University)
Kim, Hyo-Eun (Dept. of Biological Sciences, Andong National University)
Son, Seong-Min (Dept. of Biological Sciences, Andong National University)
Kim, Min-Jeong (Dept. of Biological Sciences, Andong National University)
Seo, Eul-Won (Dept. of Biological Sciences, Andong National University)
Kim, Young-Ho (Dept. of Microbiology, Kyungpook National University)
Kim, Jong-Sik (Dept. of Biological Sciences, Andong National University)
Publication Information
Journal of Life Science / v.19, no.12, 2009 , pp. 1787-1793 More about this Journal
Abstract
To investigate whether caffeic acid phenethyl ester (CAPE) could affect cancer cell viabilities and gene expression, human colorectal HCT116 cells were incubated with CAPE. CAPE decreased cancer cell viabilities and induced apoptosis in a dose-dependent manner. To analyse differently expressed genes by CAPE, we performed oligo DNA microarray analysis. We found that 266 genes were up-regulated more than twofold, whereas 143 genes were down-regulated more than twofold by 24 hr of treatment with $20{\mu}M$ CAPE. Among the up-regulated genes, we selected 3 genes (NSAID activated gene-1 [NAG-1], cyclin-dependent kinase inhibitor 1A [CDKN1A, p21] and growth arrest and DNA-damage-inducible alpha [GADD45A]) and performed reverse-transcription PCR to confirm microarray data. In addition, we found that CAPE increased NAG-1 gene and NAG-1 protein expression in a dose-dependent manner. And, several other phytochemicals (resveratrol, genistein, daidzein and capsaicin) also could induce NAG-1 expression in human colorectal HCT116 cells. However, CAPE was the highest inducer of NAG-1, even in low concentrations. Overall, these results imply that cancer cell death by CAPE is closely related with over-expression of NAG-1.
Keywords
Phytochemical; CAPE; DNA microarray; gene expression; NAG-1;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Schena, M., D. Shalon, R. W. Davis, and P. O. Brown. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467-470   DOI   ScienceOn
2 Sun, S. Y, N. Hail Jr, and R Lotan. 2004. Apoptosis as a novel target for cancer chemoprevention. J. Natl. Cancer Inst. 96, 662-672   DOI   ScienceOn
3 Surh, Y. J. 2003. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 3, 768-780   DOI   ScienceOn
4 Takahashi, Y, J. A. Lavigne, S. D. Hursting, G. V. Chandramouli, S. N. Perkins, J. C. Barrett, and T. T. Wang. 2004. Using DNA microarray analyses to elucidate the effects of genistein in androgen-responsive prostate cancer cells: identification of novel targets. Mol. Carcinog. 41, 108-119   DOI   ScienceOn
5 Wang, D, D. B. Xiang, Y J. He, Z. P. Li, X. H Wu, J. H. Mou, H. L. Xiao, and Q. H. Zhang. 2005. Effect of caffeic acid phenethyl ester on proliferation and apoptosis of colorectal cancer cells in vitro. World J. Gastroenterol. 11, 4008-4012
6 Wilson, L. C., S. J. Baek, A. Call, and T. E. Eling. 2003. Nonsteroidal anti-inflammatory drug-activated gene (NAG-1) is induced by genistein through the expression of p53 in colorectal cancer cells. Int. J. Cancer 105, 747-753   DOI   ScienceOn
7 Xiang, D., D. Wang, Y. He, J. Xie, Z. Zhong, Z. Li, and J. Xie. 2006. Caffeic acid phenethyl ester induces growth arrest and apoptosis of colon cancer cells via the beta-catenin/T-cell factor signaling. Anticancer Drugs 17, 753-762   DOI   ScienceOn
8 Jung, W. K., I. Choi, D. Y. Lee, S. S. Yea, Y. H. Choi, M. M. Kim, S. G. Park, S. K. Seo, S. W. Lee, C. M. Lee, Y. M. Park, and I. W. Choi. 2008. Caffeic acid phenethyl ester protects mice from lethal endotoxin shock and inhibits lipopolysaccharide-induced cyclooxygenase-2 and inducible nitric oxide synthase expression in RAW 264.7 macrophages via the p38/ERK and NF-kappaB pathways. Int. J. Biochem. Cell BioI. 40, 2572-2582   DOI   ScienceOn
9 Kuo, H. C., W. H. Kuo, Y. J. Lee, W. L. Lin, F. P. Chou, and T. H Tseng. 2006. Inhibitory effect of caffeic acid phenethyl ester on the growth of C6 glioma cells in vitro and in vivo. Cancer Lett. 234, 199-208   DOI   ScienceOn
10 Lampe, J. W. and J. L. Chang. 2007. Interindividual differences in phytochemical metabolism and disposition. Semin. Cancer BioI. 17, 347-353   DOI   ScienceOn
11 Lee, K. W., N. J. Kang, J. H Kim, K. M. Lee, D. E. Lee, H. J. Hur, and H. J. Lee. 2008. Caffeic acid phenethyl ester inhibits invasion and expression of matrix metalloproteinase in SK-Hep1 human hepatocellular carcinoma cells by targeting nuclear factor kappa B. Genes Nutr. 2, 319-322   DOI
12 Chen, Y. J., M. S. Shiao, and S. Y. Wang. 2001. The antioxidant caffeic acid phenethyl ester induces apoptosis associated with selective scavenging of hydrogen peroxide in human leukemic HL-60 cells. Anticancer Drugs 12, 143-149   DOI   ScienceOn
13 Maekawa, T, Y. Sano, T. Shinagawa, Z. Rahman, T. Sakuma, S. Nomura, J. D. Licht, and S. Ishii. 2008. ATF-2 controls transcription of Maspin and GADD45 alpha genes independently from p53 to suppress mammary tumors. Oncogene 27, 1045-1054   DOI   ScienceOn
14 Michaluart, P, J. L. Masferrer, A. M. Carothers, K. Subbaramaiah, B. S. Zweife, C. C. Koboldt, J. R. Mestre, D. Grunberger, P. G. Sacks, T. Tanabe, and A. J. Dannenberg. 1999. Inhibitory effects of caffeic acid phenethyl ester on the activity and expression of cyclooxygenase-2 in human oral epithelial cells and in a rat model of inflammation. Cancer Res. 59, 2347-2352
15 Rahman, K. W., Y. Li, Z. Wang, S. H Sarkar, and F. H. Sarkar. 2006. Gene expression profiling revealed survivin as a target of 3,3' -diindolylmethane-induced cell growth inhibition and apoptosis in breast cancer cells. Cancer Res. 66, 4952-4960   DOI   ScienceOn
16 Chen, M. J., W. H. Chang, C. C. Lin, C. Y. Liu, T. E. Wang, C. H. Chu, S. C. Shih, and Y. J. Chen. 2008. Caffeic acid phenethyl ester induces apoptosis of human pancreatic cancer cells involving caspase and mitochondrial dysfunction. Pancreatology 8, 566-576   DOI   ScienceOn
17 Corn, P. G. and W. S. El-Deiry. 2007. Microarray analysis of p53-dependent gene expression in response to hypoxia and DNA damage. Cancer BioI. Ther. 6, 1858-1866   DOI   ScienceOn
18 Fesen, M. R., Y. Pommier, F. Leteurtre, S. Hiroguchi, J. Yung, and K. W. Kohn. 1994. Inhibition of HIV-1 integrase by flavones, caffeic acid phenethyl ester (CAPE) and related compounds. Biochem. Pharmacol. 48, 595-608   DOI   ScienceOn
19 He, Y. J., B. H. Liu, D. B. Xiang, Z. Y. Qiao, T. Fu, and Y. H. He. 2006. Inhibitory effect of caffeic acid phenethyl ester on the growth of SW 480 colorectal tumor cells involves beta-catenin associated signaling pathway down-regulation. World J. Gastroenterol. 12, 4981-4985
20 Foo, E., E. Bullier, M. Goussot, F. Foucher, C. Rameau, and C. A. Beverideg. 2005. The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell 17, 464-474   DOI   ScienceOn
21 Jacobs, D. R Jr, L. Marquart, J. Slavin, and L. H. Kushi. 1998. Whole-grain intake and cancer: an expanded review and meta-analysis. Nutr. Cancer 30, 85-96   DOI   ScienceOn
22 Jin, U. H., K. H. Song, M. Motomura, I. Suzuki, Y. H. Gu, Y. J. Kang, T. C. Moon, and C. H. Kim. 2008. Caffeic acid phenethyl ester induces mitochondria-mediated apoptosis in human myeloid leukemia U937 cells. Mol. Cell Biochem. 310, 43-48   DOI
23 Baek, S. J., R. Okazaki, S. H. Lee, J. Martinez, J. S. Kim, K. Yamaguchi, Y. Mishina, D. W. Martin, A. Shoieb, M. F. McEntee, and T. E. Eling. 2006. Nonsteroidal anti-inflammatory drug-activated gene-lover expression in transgenic mice suppresses intestinal neoplasia. Gastroenterology 131, 1553-1560   DOI   ScienceOn
24 Baek, S. J., J. S. Kim, J. B. Nixon, L. C. Wilson, and T. E. Eling. 2001. Cyclooxygenase inhibitors regulate the expression of a TGF-beta superfamily member that has proapoptotic and antitumorigenic activities. Mol. Pharmacol. 59, 901-908
25 Baek S. L. J., L. C. Wilson, and T. E. Eling. 2002. Resveratrol enhances the expression of non-steroidal anti-inflammatory drug-activated gene (NAG-I) by increasing the expression of p53. Carcinogenesis 23, 425-434   DOI   ScienceOn