Browse > Article
http://dx.doi.org/10.5352/JLS.2009.19.12.1737

Inhibitory Effect of Linum usitatissimum and Perilla frutescens as Sources of Omega-3 Fatty Acids on Mutagenicity and Growth of Human Cancer Cell Lines  

Lim, Sun-Young (Division of Marine Environment & Bioscience, Korea Maritime University)
Publication Information
Journal of Life Science / v.19, no.12, 2009 , pp. 1737-1742 More about this Journal
Abstract
It has been known that Linum usitatissimum and Perilla frutescens are dietary sources of possible chemopreventive compounds such as lignans and $\alpha$-linolenic acid. Here, we investigated and compared the inhibitory effects of methanol extracts from Linum usitatissimum and Perilla frutescens on mutagenicity using the Ames test, and growth of human cancer cells (AGS human gastric adenocarcinoma, HT-29 human colon cancer, Hep 3B hepatocellular carcinoma cells). In the Ames test system using Salmonella typhimurium TA100, aflatoxin $B_1$ ($AFB_1$)-induced mutagenicity was significantly inhibited by treatment with the methanol extract from either Linum usitatissimum or Perilla frutescens (p<0.05) in a dose dependent manner. As for N-methyl-N'-nitro-N-nitrosoguamidine (MNNG)-induced mutagenicity, the methanol extracts (5 mg/assay) from Linum usitatissimum and Perilla frutescens showed 63% and 78% inhibitory rates, respectively, indicating that Perilla frutescens possessed stronger antimutagenic activity than did Linum usitatissimum. Inhibitory effects of methanol extracts from Linum usitatissimum and Perilla frutescens on the growth of human cancer cells (AGS, HT-29 and Hep 3B) appeared to increase dose dependently, and the inhibition was more effective against AGS and HT-29 compared to Hep 3B cells. Our results suggested that the methanol extract from Perilla frutescens showed stronger antimutagenic activity than that from Linum usitatissimumas assayed by the Ames mutagenic test, whereas the methanol extract from Linum usitatissimum was more effective than its counterpart for growth inhibition of human cancer cells. It is concluded that intake of Linum usitatissimum and Perilla frutescens as sources of omega-3 fatty acids will be beneficial for preventing cancer.
Keywords
Linum usitatissimum; Perrilla frutescens; antimugenicity; human cancer cells; Ames test;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Karp, F., C. A Mihaliak, J. L. Harri, and R. Croteau. 1990. Monoterpene biosynthesis specificity of the hydroxylactions of (-)-limonene by enzyme preparations from peppermint (Mentha spicata), and perilla (Perilla jrutescens) leaves. Arch. Biochem. Biophys. 276, 219-226   DOI   ScienceOn
2 Ames, B. N., J. McGann, and E. Yamasaki. 1975. Method for detecting carcinogens and mutagens with the SaImonellsa/mammalian-microsome mutagenicity test. Muta. Res. 31, 347-364   DOI
3 Bommareddy, A., X. Zhang, D. Schrader, R. S. Kaushil, D. Zeman, D. P. Matthees, and C. Dwivedi. 2009. Effects of dietary flaxseed on intestinal tumorigenesis in Apc (Min) mouse. Nutr. Cancer 61, 276-283   DOI   ScienceOn
4 Tou, J. C. L. and L. U. Thompson. 1999. Exposure to flaxseed or its lignan component during different developmental stages influences rat mammary gland structures. Carcinegenesis 20, 1831-1835   DOI   ScienceOn
5 Wachi, AM., L. A Sinclair, R. G. Wilkinson, M. Enser, J. D. Wood, and A V. Fisher. 2002. Effect of dietary fat source and breed on the carcass composition, n-3 polyunsaturated and conjugated linoleic acid content of sheep meat and adipose tissue. Br. J. Nutr. 88, 697-709   DOI   ScienceOn
6 Wang, L., J. Chen, and L. U. Thompson. 2005. The inhibitory effect of flaxseed on the growth and metastasis of estrogen receptor negative human breast cancer xenografts is attributed to both its lignan and oil components. Int. J. Cancerm. 116, 793-798   DOI   ScienceOn
7 Watanabe, S., N. Sakai, Y. Yasui, Y. Kimura, T. Kobayashi, T. Mizutani, and H. Okuyama. 1994. A high a-linolenate diet suppresses antigen-induced immunoglobin E response and anaphylactic shock in mice. J. Nutr. 124, 1566-1573   DOI   ScienceOn
8 Williams, D., M. Verghese, L. T. Walker, J. Boateng, L. Shackelford, and C. B. Chawan. 2007. Flax seed oil and flax seed meal reduce the formation of aberrant crypt foci (ACF) in azoxymethane-induced colon cancer in fisher 344 male rats. Food Chem. Toxicol. 45, 153-159   DOI   ScienceOn
9 Yan, L., J. A Yee, D. Li, M. H. McGuire, and L. U. Thompson. 1998. Dietary flaxeed supplementation and experimental metastasis of melanoma cells in mice. Cancer Lett. 124, 181-186   DOI   ScienceOn
10 Zaidi, N. H., P. J. O'Connor, and W. H. Butler. 1993. N-methyl-N' -nitro-N-nitrodoguamidine-induced carcinogenesis: differential pattern of upper gastointestinal tract tumours in Wistar rats after single or chronic oral doses. Carginogenesis 14, 1561-1567   DOI   ScienceOn
11 Park W. K, B. H. Park and Y. H. Park. 2000. Encyclopedia of food and food science. Shin Kwang Publishibg Co. seoul Korea. pp. 234
12 Narisawa, T., M. Takahashi, H. Kotanagi, H. Kusaka, Y. Yamazaki, H. Koyama, Y. Fukaura, Y. Nishizawa, M. Kotsugai, Y. Isoda, J. Hirano, and N. Tanida. 1991. Inhibitory effect of dietary perilla oil rich in the n-3 polyunsaturated fatty acid alpha-linoleic acid on colon carcinogenesis in rats. Jpn. J. Cancer Res. 82, 1089-1096   DOI
13 Narisawa, T., Y. Fukaura, K Yazawa, C. Ishikawa, Y. Isoda, and Y. Nishizawa. 1994. Colon cancer prevention with a small amount of dietary perilla oil high in alpha-linolenic acid in an animal model. Cancer 15, 2069-2075
14 Onogi, N., M. Okuno, C. Komaki, H. Moriwaki, T. Kawamori, T. Tanaka, H. Mori, and Y. Muto. 1996. Suppressing effect of perilla oil on azoxymethane-induced foci of clonic aberrant crypts in rats. Carcinogenesis 17, 1291-1296   DOI   ScienceOn
15 Park, D. S., K I. Lee, and K Y. Park. 2001. Quantitative analysis of dietary fibers from perilla frutescens seeds and antimutagenic effect of its extracts. J. Kor. Soc. Food Sci. Nutr. 30, 900-905
16 Rose, D. P., J. M. Connolly, J. Rayburn, and M. Coleman. 1995. Influence of diets containing eicosapentaenoic or docosahexaenoic acid on growth and metastasis of breast cnacer cells in nude mice. J. Natl. Cancer Inst. 87, 587-592   DOI   ScienceOn
17 Sandstrom, B., S. BugaeL C. Lauridsen, F. Nielsen, C. Jensen, and L. H. Skibsted. 2000. Cholesterol-lowering potential in human subjects of fat from pigs fed rapseed oil. Br. J. Nutr. 84, 143-150   DOI   ScienceOn
18 Kim, E. H. and D. H. Kim. 1981. Antioxidant activity of ethanol-extracts of defatted soybean, sesame, and perilla flours in a soybean oil-water emulsion system. Kor. J. Food Sci. Technol. 13, 283-288
19 Thuy, N. T., P. He, and H. Takeuchi. 2001. Comparative effect of dietary olive, safflower, and linseed oils on spontaneous liver tumorigenesis in C3H/He mice. J. Nutr. Sci. Vitaminol. (Tokyo) 47, 363-366   DOI   ScienceOn
20 Kelley, D. S., G. J. Nelson, C. M. Serrato, P. C. Schmidt, and L. B. Branch. 1988. Effects of type of dietary fat on indices of immune status of rabbits. J. Nutr. 118, 1376-1384   DOI   ScienceOn
21 Kim, J. S., Y. J. Nam, and J. W. Kim. 1995. Screening of quinone reductase induces from agricultural byproducts using mouse hepatoma cell line. Kor. J. Food Sci. Technol. 27, 972-977
22 Komaki, C., M. Okuno, N. Onogi, H. Moriwaki, T. Kawamori, T. Tanaka, H. Mori, and Y. Muto. 1996. Synergistic suppression of azoxymethane-induced foci of colonic aberrant crypts by the combination of $\beta$-carotene and perilla oil in rats. Carcinogenesis 17, 1897-1901   DOI   ScienceOn
23 Kurowska, E. M., G. K Dresser, L. Deutsch, D. Vachon, and W. Khalil. 2003. Bioavailablity of omega-3 essential fatty acids. Prostaglandins Leukotrienes Essential Fatty Acids 68, 207-212   DOI   ScienceOn
24 Lee, Y. L D. H. Shin, Y. S. Chang, and J. I. Shin. 1993. Antioxidantvie effect of some edible plant solvent extracts with various synergists. Kor. J. Food Sci. Technol. 25, 683-688
25 Maron, D. M. and B. N. Ames. 1983. Reversed methods for the Salmonella mutagenicity test. Muta. Res. 113, 173-215   DOI
26 Franceschi, R. T., W. M. James, and G. Zerlauth. 1985. 1$\alpha$, 25-dihydroxy vitamin D3 specific regulation of growth, morphology and fibronectin and a human osteosarcoma cell line. J. Cell PhysioI. 123, 401-409   DOI
27 Nagatsu, A, K Tenmaru, H. Matsuura, N. Murakami, T. Kobayashi, H. Okuyama, and J. Sakakibara. 1995. Novel antioxidants from roasted perilla seeds. Chem. Pharm. Bull. 43, 887-889   DOI   ScienceOn
28 Cognault, S., M. L. Jourdan, E. Germain, R. Pitavy, E. Morel, G. Durand, P. Bougnoux, and C. Lhuillery. 2000. Effect of an a-linolenic acid-rich diet on rat mammary tumor growth depends on the dietary oxidative status. Nutr. Cancer 36, 33-41   DOI   ScienceOn
29 Dwivedi, c., K. Natarajan, and D. P. Mattees. 2005. Chemopreventive effects of dietary flaxseed oil on colon tumor development. Nutr. Cancer 51, 52-58   DOI   ScienceOn
30 Goldburg, E., H. Nitowsky, and S. Colowick. 1965. The role of glycolysis in the growth of tumor cells. J. BioI. Chem. 240, 2791-2796
31 Hirose, M., A. Masuda, N. Ito, K. Kamano, and H. Okuyama. 1990. Effects of dietary perilla oil, soybean oil and safflower oil on 7,12-dimethylbenz [a] anthracene (DMBA) and l,2-dimethy-hydrazine (DMH)-induced mammary gland and colon carcinogenesis in female SD rats. Carcinogenesis 11, 731-735   DOI   ScienceOn
32 Hong, E. Y., H. J. Kang, C. S. Kwon, Y. J. Nam, M. J. Suh, and J. S. Kim. Modulation of cellular quinone reductase induciblity by roasting treatment and acid hydrolysis of perilla. J. Kor. Soc. Food Sci. Nutr. 26, 186-192
33 Jelinska, M., A Tokarz, R. Oledzka, and A Czorniuk-Sliwa. 2003. Effects of dietary linseed, evening primose or fish oils on fatty acid and prostaglandin E2 contents in the rat livers and 7,12-dimethylbenz[a]anthracene-induced tumores. Biochim. Biophys. Acta 1637, 193-199   DOI   ScienceOn