Browse > Article
http://dx.doi.org/10.5352/JLS.2008.18.4.585

Closed Conformation of a Human Phosphatase, Chronophin under the Reduced Condition.  

Cho, Hyo-Je (School of Life Science and Biotechnology, Kyungpook National University)
Kang, Beom-Sik (School of Life Science and Biotechnology, Kyungpook National University)
Publication Information
Journal of Life Science / v.18, no.4, 2008 , pp. 585-589 More about this Journal
Abstract
Chronophin is a phosphatase responsible for the dephosphorylation of cofilin, which regulates the rearrangement of actin cytoskeleton. It is also known as a phosphatase for pyrodoxal 5'-phosphate (PLP), an active form of vitamin $B_6$, and maintains the level of PLP in the cytoplasm. Since this phosphatase belongs to a HAD subfamily containing a cap domain, it is expected to undergo a conformational change for the binding of a substrate. However, the crystal structure of chronophin has a disulfide bridge between the cap and core domains preventing a movement of the cap domain against the core domain. It is possible that the disulfide bond between C91 and C221 was formed by an oxidation during the crystallization. Here, we obtained chronophin crystals under a reduced condition and determined the crystal structure. This reduced chronophin does not contain a disulfide bridge and shows a closed conformation like the oxidized form. It implies that an active chronophin binds its substrate under the closed conformation without the disulfide bond and shows a high substrate specificity in the cell.
Keywords
Chronophin; phosphatase; disulfide bond; crystal structure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lahiri, S. D., G. Zhang, J. Dai, D. Dunaway-Mariano, and K. N. Allen. 2004. Analysis of the substrate specificity loop of the HAD superfamily cap domain. Biochemistry 43, 2812-2820   DOI   ScienceOn
2 Selengut, J. D. and R. L. Levine. 2000. MDP-1: a novel eukaryotic magnesium-dependent phosphatase. Biochemistry 39, 8315-8324   DOI   ScienceOn
3 Lappalainen P and D. G. Drubin. 1997. Cofilin promotes rapid actin filament turnover in vivo. Nature 388, 78-82   DOI   ScienceOn
4 Murshudov, G. N., A. A. Vagin and E. J. Dodson. 1997. Refinement of macromolecular structures by the maximum- likelihood method. Acta Crystallogr. D 53, 240-255
5 Sheffield, P., S. Garrard, and Z. Derewenda. 1999. Overcoming expression and purification problems of RhoGDI using a family of "Parallel" expression vectors. Protein Expr. Purif. 15, 34-39   DOI   ScienceOn
6 Navaza, J. 1994. AMoRe: an automated package for molecular replacement. Acta. Crystallogr. 50, 157-163   DOI   ScienceOn
7 Otwinowski, Z. and W. Minor. 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326   DOI
8 Plastino, J. and C. Sykes. 2005. The actin slingshot. Curr. Opin. Cell Biol. 17, 62-66   DOI   ScienceOn
9 Berman, H. M., J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov and P. E. Bourne. 2000. The Protein Data Bank. Nucleic Acids Res. 28, 235-242
10 Carlier, M. F., V. Laurent, J. Santolini, R. Melki, D. Didry, G. X. Xia, Y. Hong, N. H. Chua, and D. Pantaloni. 1997. Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implications for actin-based motility. J. Cell Biol. 136, 1307-1322   DOI   ScienceOn
11 Fonda, M. L. 1992. Purification and characterization of vitamin B6-phosphate phosphatase from human erythrocytes. J. Biol. Chem. 267, 15978-15983
12 Galkin, V. E., A. Orlova, N. Lukoyanova, W. Wriggers, and E. H. Egelman. 2001. Actin depolymerizing factor stabilizes an existing state of F-actin and can change the tilt of F-actin subunits. J. Cell Biol. 153, 75-86   DOI   ScienceOn
13 Gohla, A., J. Birkenfeld, and G. M. Bokoch. 2005 Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nat. Cell Biol. 7, 21-29   DOI   ScienceOn
14 Jones, T. A., J. Y. Zou, S. W. Cowan, and M. Kjeldgaard. 1991. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta. Crystallogr. A 47, 110-119
15 Snell, E. E. 1990. Vitamin B6 and decarboxylation of histidine. Ann. N.Y. Acad. Sci. 585, 1-12
16 Allen, K. N. and D. Dunaway-Mariano. 2004. Phosphoryl group transfer: evolution of a catalytic scaffold. Trend Biochem. Sci. 29, 495-503   DOI   ScienceOn
17 Bamburg, J. R. 1999. Proteins of the ADF/Cofilin family: Essential regulators of actin dynamics. Ann. Rev. Cell Dev. Biol. 15, 185-230   DOI   ScienceOn
18 Toshima, J., J. Y. Toshima, T. Amano, N. Yang, S. Narumiya, and K. Mizuno. 2001. Cofilin phosphorylation by testicular protein kinase 1 and its role in integrin-mediated actin reorganization and focal adhesion formation. Mol. Biol. Cell 12, 1131-1145   DOI
19 Wiggan, O., B. W. Bernstein, and J. R. Bamburg. 2005. A phosphatase for cofilin to be HAD. Nature Cell Biol. 7, 8-9   DOI   ScienceOn
20 Yang, N., O. Hiquchi, K. Ohashi, K. Naqata, A. Wada, K. Kangawa, E. Nishida, and K. Mizuno. 1998. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393, 809-812   DOI   ScienceOn
21 Lu, Z., D. Dunaway-Mariano, and K. N. Allen. 2005. HAD superfamily phosphotransferase substrate diversification: structure and function analysis of HAD subclass IIB sugar phosphatase BT4131. Biochemistry 44, 8684-8696   DOI   ScienceOn
22 McGough, A., B. Pope, W. Chiu and A. Weeds. 1997. Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J. Cell Biol. 138, 771-781   DOI   ScienceOn