Browse > Article
http://dx.doi.org/10.5352/JLS.2008.18.2.175

Genetic Diversity and Population Structure of Comus controversa Hemsley Using RAPD  

Moon, Sung-Gi (Department of Biology, Kyungsung University)
Huh, Man-Kyu (Department of Molecular Biology, Dong-eui University)
Publication Information
Journal of Life Science / v.18, no.2, 2008 , pp. 175-179 More about this Journal
Abstract
Cornus controversa is a long-lived woody species mostly distributed in East Asia. Random amplified polymorphic DNA (RAPD) markers were used to investigate the genetic diversity and population structure of Korean populations of this species. A high level of genetic variation was found in seven populations of C. controversa. The mean genetic diversity (H) was 0.222 across populations, varying from 0.200 to 0.238. Eighty of the 93 loci (86.0%) showed detectable polymorphism in at least one population. Total genetic diversity values ($H_T$) varied between 0.192 and 0.231, giving an average overall polymorphic loci of 0.212. The interlocus variation of genetic diversity within populations ($H_S$) was high (0.167). Mean of genetic diversity in C. controversa was higher than average values for species with similar life history traits. The sexual reproduction, perennial habitat, and longevity are proposed as possible factors contributing to high genetic diversity. On a per locus basis, the proportion of total genetic variation due to differences among populations ($G_{ST}$) ranged from 0.169 to 0.278 with a mean of 0.216, indicating that about 21.6% of the total genetic variation was among populations. An indirect estimate of the number of migrants per generation (Nm=1.893) indicated that gene flow was extensive among Korean populations of C. controversa.
Keywords
Comus controversa; random amplified polymorphic DNA; genetic diversity; population structure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bartish, I. V., L. P. Garkava, K. Rumpunen and H. Nybom. 2000. Phylogenetic relationships and differentiation among and within populations of Chaenomeles Lindl. (Rosaceae) estimated with RAPDs and isozymes. Theor. Appl. Genet. 101, 554-563   DOI   ScienceOn
2 Cornelissen, J. H. C. 1993. Seedlings growth and morphology of the deciduous tree Cornus controversa in simulated forest gap light environments in subtrophical China. Plant Species Biology 8, 21-27   DOI
3 Cronquist, A. 1981. An Intergreted System of Classification of Plants. Columbia University Press, New York
4 Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) version 3.5s. Distributed by the author. Department of Genetics, University of Washington, Seattle, WA.
5 Hamrick, J. L. and M. J. W. Godt. 1989. Allozyme Diversity in Plant Species, pp. 304-319, In Brown, A. H. D., M. T. Clegg, A. L. Kahler and B. S. Weir (eds.), Plant Population Genetics, Breeding and Genetic Resources, Sinauer Associates, Sunderland, MA.
6 Hutchinson, J. 1959. The Families of Flowering Plants. Vol. 1, Clarendon Press, Oxford
7 Iruela, M., J. Rubio, J. I. Cubero, J. Gil and T. Mill. 2002. Phylogenetic analysis in the genus Cicer and cultivated chickpea using RAPD and ISSR markers. Theor. Appl. Genet. 104, 643-651   DOI   ScienceOn
8 Koverza, O. V., Z. G. Kokaeva, F. A. Konovalov and S. A. Gostimsky. 2005. Identification and mapping of polymorphic RAPD markers of pea (Pisum sativum L.) genome. Russian J. Genetics 41, 262-268   DOI   ScienceOn
9 Lewontin, R. C. 1972. The apportionment of human diversity. Evol. Biol. 6I, 381-398
10 Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA. 70I, 3321-3323
11 Slatkin, M. 1987. Gene flow and the geographic structure of natural populations. Science 236, 787-792   DOI
12 Fan, C. and Q. Y. Xiang. 2001. Phylogenetic relationships within Cornus (Cornaceae) based on 26S rDNA sequences. Am. J. Bot. 88, 1131-1138   DOI   ScienceOn
13 Beebe, S., P. W. Skroch, J. Tohme, M. C. Duque, F. Pedraza and J. Nienhuis. 2000. Structure of genetic diversity among common bean landraces of Middle American origin based on correspondence analysis of RAPD. Crop. Sci. 40, 264-273   DOI   ScienceOn
14 Qian, W., S. Ge and D. Y. Hong. 2001. Genetic variation within and among populations of a wild rice Oryza granulata from China detected by RAPD and ISSR markers. Theor. Appl. Genet. 102, 440-449   DOI   ScienceOn
15 Masaki, T., H. Tanaka, M. Shibata and T. Nakashizuka. 1994. The seed bank dynamics of Cornus controversa and their role in regeneration. Seed Science Research 8, 53-63
16 Wright, S. 1951. The genetic structure of populations. Ann. Eugen. 15, 313-354
17 Abo-elwafa, A. K. and M. T. Shimada. 1995. Intra- and inter-specific variations in Lens revealed by RAPD markers. Theor. Appl. Genet. 90, 335-340
18 Jang, S. S., S. W. Lee, C. S. Kim, Y. M. Kim and H. E. Kim. 2003. Genetic diversity and structure of national populations of Cornus controversa in South Korea. J. Korean For. Soc. 92, 42-51
19 Lee, Y. N., 1997, Flora of Korea. Kyo-Hak Publishing Co., Seoul, Korea
20 Merrit, L. F. 1950. GRAY'S Manual of Botany. pp.1105-1106, Harvard University
21 Park, U. H. 1999. The Taxonomical Study of the Korean Cornaceae. MS, Thesis, University of Gyeongsang
22 Yeh, F. C., R. C. Yang and T. Boyle. 1999. POPGENE version 1.31, Microsoft windows-based freeware for population genetic analysis, Edmonton, Canada
23 Kang, P. S. 2006. Taxonomic Reexamination on the Genus Cornus in Korea. MS, Thesis, University of Hannam
24 Xiang, Q. Y., D. E. Soltis and P. S. Soltis. 1998. Phylogenetic relationships of Cornaceae and close relatives inferred from matK and rbcL sequences. Am. J. Bot. 85, 285-297   DOI   ScienceOn