Browse > Article
http://dx.doi.org/10.5352/JLS.2008.18.1.001

Effects of Exercise Training and Selenium on MCT1 and MCT4 Protein Levels in Skeletal Muscles of Diabetic Goto-Kakizaki Rats  

Kim, Seung-Seok (Exercise Biochemistry Laboratory, Korea National Sport University)
Kang, Eun-Bum (Exercise Biochemistry Laboratory, Korea National Sport University)
Eum, Hyun-Sub (Exercise Biochemistry Laboratory, Korea National Sport University)
Kim, Bum-Su (Exercise Biochemistry Laboratory, Korea National Sport University)
Lim, Yea-Hyun (Exercise Biochemistry Laboratory, Korea National Sport University)
Park, Joon-Young (Exercise Biochemistry Laboratory, Korea National Sport University)
Cho, In-Ho (Exercise Biochemistry Laboratory, Korea National Sport University)
Oh, Yoo-Sung (Department of Physical Education, Seoul city University)
Kwak, Yi-Sub (Department of Leisure Sports, Dong-Eui University)
Cho, Joon-Yong (Exercise Biochemistry Laboratory, Korea National Sport University)
Publication Information
Journal of Life Science / v.18, no.1, 2008 , pp. 1-8 More about this Journal
Abstract
The purpose of this study was to determine the possible additive effects of endurance exercise training (EXER) and selenium (SELE) on the improvements of glucose and lactate transport capacities in diabetic Goto-kakizaki rats. Animals either remained sedentary control (SED) or performed EXER or received SELE [$5{\mu}mol$ kg body wt (-1) day (-1)], or underwent both EXER and SELE (COMBI), which lasted for 6 wk. Compared with sedentary control, EXER alone or the SELE alone group, or the combined treatment group had significant reduction in glucose response measured at 90 min and 120 min during an intraperitoneal glucose tolerance test (IPGTT) and body weight after 6week treatment. EXER alone, or combined group individually had significantly higher glycogen contents in liver compared with SED or SELE groups. EXER alone increased glycogen content in soleus and plantaris compared with SED, and this parameter was increased to greatest extent in the combined treatment groups compared with SED or SELE groups. EXER alone, SELE alone or COMBI, caused significant decreases in the plasma lactates, serum glucose, insulin, total cholesterol and HOMA-IR along with a significant increase in high-density lipoprotein cholesterol compared with SED. In addition, EXER or COMBI individually had significantly lower serum triacylglycerol compared with SED or SELE. With respect to protein expression related to glucose and lactate transport capacities, EXER alone, SELE alone, or COMBI increased in MCT1 and MCT4 protein level in soleus and plantaris. Furthermore, EXER alone, SELE alone or COMBI caused significant increases in mt MCT1 protein level in soleus and plantaris. The findings of the current study suggest that endurance exercise training and selenium treatment may provide therapeutic values to type II diabetic patients with peripheral insulin resistance and hyperlactatecemia by improving glucose and lactate transport capacities, leading to improvements in plasma lactate, serum glucose, insulin and lipid profiles (TC, TG, HDL).
Keywords
Exercise training; selenium; MCT1; MCT4; Goto-Kakizaki rats; glycogen; intraperitoneal glucose tolerance test (IPGTT);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Adamo, K. B. and T. E. Graham. 1998. Comaparison of traditional measurements with macro glycogen and pro-glycogen anna lysis of muscle glycogen. Journal of Applied Physiology 84(3), 908-913.   DOI
2 Czech, M. P. and S. Corvera. 1999. Signaling mechanisms that regulate glucose transport. Journal of Biological Chemistry 274(4), 1865-1868.   DOI   ScienceOn
3 Py, G., N. Eydoux, A. Perez-Martin, E. Raynaud, J. F. Brun, C. Prefaut and J. Mercier. 2001. Streptozotocin-induced diabetes decreases rat sarcolemmal lactate transport. Metabolism 50, 418-424.   DOI   ScienceOn
4 Becker, D. J., B. Reul, A. T. Ozcelikay, J. P. Buchetm, J. C. Henquin and S. M. Brichard, 1996. Oral selenate improves glucose homeostasis and partly reverses abnormal expression of liver glycolytic and gluconeogenic enzymes in diabetic rats. Diabetologia 39(1), 3-11.   DOI   ScienceOn
5 Tancrede, G., S. Rousseau-Migneron and A. Nadeau. 1982. Beneficial effects of physical training in rats with a mild streptozotocin-induced diabetes mellitus. Diabetes 31 (5Pt1), 406-409.   DOI   ScienceOn
6 Mueller, A. S. and J. Pallauf. 2006. Compendium of the antidiabetic effects of supranutritional selenate doses. In vivo and in vitro investigations with type II diabetic db/db mice. Journal of Nutritional Biochemistry 17(8), 548-560.   DOI   ScienceOn
7 Py, G., K. Lambert, O. Milhavet, N. Eydoux, C. Prefaut and J. Mercier. 2002. Effect of streprozotocin-induced diabetes in markers of skeletal muscle metabolism and monocarboxylate transporter 1 to monocarboxylate transporter 4 transporters. Metabolism 51, 807-813.   DOI   ScienceOn
8 Tan, M. H., A. Bonen, W. Watson-Wright, D. Hood, M. Sopper, D. Currie, A. N. Belcastro and G. Pierce. 1984. Muscle glycogen repletion after exercise in trained normal and diabetic rats. Journal of Applied Physiology 57(5), 1404-1408.   DOI
9 Halestrap, A. P. and N. T. Price. 1999. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochemical Journal 343, 281-299.   DOI   ScienceOn
10 Tan, M. H., A. Bonen, J. B. Garner and A. N. Belcastro. 1982. Physical training in diabetic rats: effect on glucose tolerance and serum lipids. Journal of Applied Physiology 52(6), 1514-8.   DOI
11 Enoki, T., Y. Yoshida, H. Hatta and A. Bonen, 2003. Exercise training alleviates MCT1 and MCT4 reductions in heart and skeletal muscle of STZ-induced diabetic rats. Journal of Applied Physiology 94, 2433-2438.   DOI
12 Ferrannini, E., A. Lanfranchi, F. Rohner-Jeanrenaud, G. Manfredini and Van de G. Werve. 1990. Influence of long-term diabetes on liver glycogen metabolism in the rat. Metabolism 39(10), 1082-1088.   DOI   ScienceOn
13 Khamaisi, M., R. Potashnik, A. Tirosh, E. Demshchak, A. Rudich, H. Tritschler, K. Wessel and N. Bashan. 1997. Lipoic acid reduces glycemia and increases muscle GLUT4 content in streptozotocin-diabe tic rats. Metabolism 46, 763-768.   DOI   ScienceOn
14 Metz, L., M. Vermaelen, K. Lambert, C. Broca, P. Sirvent, C. Raynaud and J. Mercier. 2005. Endurance training increases lactate transport in male Zucker falfa rats. Biochemical and Biophysical Research Communications 331, 1338-1345.   DOI   ScienceOn
15 Mondon, C. E., I. R. Jones, S. Azhar, C. B. Hollenbeck and G. M. Reaven. 1992. Lactate production and pyruvate dehydrogenase activity in fat skeletal muscle from diabetic rats. Diabetes 41, 1547-1554.   DOI   ScienceOn
16 Hajduch, E., Heyes, R. R., Watt, P. W. and Hundal, H. S. 1999. Lactate transport in rat adipocyte: identification of monocarboxylate transport 1 (MCT1) and its modulation during streptozotocin-induced diabetes. FEBS Lett. 479, 281-299.
17 Ghosh, R, B. Mukherjee and M. A. Chatterjee. 1994. Novel effect of selenium on streptozotocin-induced diabetic mice. Diabetes Research 25(4), 165-171.
18 Goodyear, L. J., M. F. Hirshman, R. J. Smith and E. S. Horton. 1991. Glucose transporter number, activity and isoform content in plasma membranes of red and white skeletal muscle. American Journal of Physiology 261, E556-E561.
19 Goto, Y., M. Kakizaki and N. Masaki. 1976. Production of spontaneous diabetic rats by repetition of selective breeding. Tohoku Journal of Experimental Medicine 119(1), 85-90.   DOI   ScienceOn
20 Brooks, G. A. 2000. Intra and extra-cellular lactate shuttles, Medicine and Science and Sports Exercise 32, 790-799.   DOI   ScienceOn
21 Carey, P. E., J. Halliday, J. E. Snaar, P. G. Morris and R. Taylor. 2003. Direct assessment of muscle glycogen storage after mixed meals in normal and type 2 diabetic subjects. American Journal of Physiological Endocrinology Metabolism 284(4), E688-E694.   DOI
22 Bo, S., A. Lezo, G. Menato, M. L. Gallo, C. Bardelli, A. Signorile, C. Berutti, M. Massobrio and G. F. Pagano. 2005. Gestational hyperglycemia, zinc, selenium, and antioxidant vitamins. Nutrition 21(2), 186-191.   DOI   ScienceOn
23 Almind, K., A. Dorio and C. R. Kahn. 2001. Putting the genes for type II diabetes on the map. Nat. Med. 7, 277-279.   DOI   ScienceOn
24 Juel, C. and A. P. Halestrap. 1999. Lactate transport in skeletal muscle-role and regulation of the monocarboxylate transporter. Journal of Physiology 517, 633-642.   DOI
25 Muller, A. S., E. Most and J. Pallauf. 2005. Effects of a supranutritional dose of selenate compared with selenite on insulin sensitivity in type II diabetic dbdb mice. J. Anim. Physiol. Anim. Nutr. 89(3-6), 94-104.   DOI   ScienceOn
26 Ulusu, N. N. and B. Turan. 2005. Beneficial effects of selenium on some enzymes of diabetic rat heart. Biol. Trace. Elem. Res. 103(3), 207-216.   DOI   ScienceOn
27 Bonen, A. 2001. Expression of lactate transporters (MCT1, MCT4) in heart and muscle. European. Journal of Applied Physiology 86, 6-11.   DOI   ScienceOn