Browse > Article
http://dx.doi.org/10.5352/JLS.2008.18.10.1325

Spatial Autocorrelation Analysis among Subpopulations of Salix koriyanagi in Swampy Area at the Namgang River, Korea  

Huh, Man-Kyu (Department of Molecular Biology, Dongeui University)
Publication Information
Journal of Life Science / v.18, no.10, 2008 , pp. 1325-1330 More about this Journal
Abstract
Salix koriyanagi is a deciduous shrub and native to Korea. The spatial distribution of multilocus allelic frequencies and geographical distances of the natural population in upper swampy area at the Namgang River in Korea were studied. The species showed a significant positive and negative spatial autocorrelation according to geographical distances as measured by Moran's I. Genetic similarity of individuals was found among subpopulations at up to a scale of a 12 m distance, and this was partly due to a combination of allelic frequencies, and therefore, a significant spatial autocorrelation was composed of a scale of 12 m intervals. Within S. koriyanagi in swampy area at the Namgang River, a strong spatial structure was observed for allozyme markers, indicating a migration within subpopulations.
Keywords
Moran's I; Salix koriyanagi; spatial autocorrelation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dewey, S. E. and J. S. Heywood. 1988. Spatial genetic structure in a population of Psychotria nervosa. I. Distribution of genotypes. Evolution 42, 834-838.   DOI   ScienceOn
2 Clayton, J. W. and D. N. Tretiak. 1972. Amine-citrate buffers for pH control in starch gel electrophoresis. J. Fish. Res. Board Can. 29, 1169-1172.   DOI
3 Sokal, R. R and N. L. Oden. 1978b. Spatial autocorrelation in biology 2. Some biological implications and four applications of evolutionary and ecological interest. Biol. J. Linn. Soc. 10, 229-249.
4 Levin, D. A. 1984. Inbreeding depression and proximitydependent crossing succession in Phlox drummondii. Evolution 38, 116-127.   DOI   ScienceOn
5 Cassens, I., R. Tiedemann, F. Suchentrunk and G. B. Hartl. 2000. Mitochondrial DNA variation in the European otter (Lutra lutra) and the use of spatial autocorrelation analysis in conservation. J. Hered. 91, 31-34.   DOI   ScienceOn
6 Krebs, C. J. 2001. Ecology. The Experimental and Analysis of Distribution and Abundance. pp. 695, Addison Wesley Longman, Inc., San Francisco, California.
7 Lee, C. S., Y. H. You and G. R. Robinson. 2002. Secondary succession and natural habitat restoration in abandoned rice fields of central Korea. Restoration Ecology 10, 306-314.   DOI   ScienceOn
8 Hamrick, J. L., M. J. W. Godt and S. L. Sherman-Broyles. 1992. Factors influencing levels of genetic diversity in woody plant species. New Forests 6, 95-124.   DOI
9 Kalisz, S., J. D. Nason, F. A. Hanzawa and S. J. Tonsor. 2001. Spatial population genetic structure in Trillium grandiflorum: the roles of dispersal, mating, history, and selection. Evolution 55, 1560-1568.   DOI
10 Epperson, B. K. 1990. Spatial autocorrelation of genotypes under directional selection. Genetics 124, 757-771.
11 Epperson, B. K. 1995. Fine-scale spatial structure: correlations for individual genotypes differ from those for local gene frequencies. Evolution 49, 1022-1026.   DOI   ScienceOn
12 Epperson, B. K. and R. W. Allard. 1989. Spatial autocorrelation analysis of the distribution of genotypes within populations of lodgepole pine. Genetics 121, 369-377.
13 Ohsawa, R., N. Furuya and Y. Ukai. 1993. Effects of spatially restricted pollen flow on spatial genetic structure of an animal-pollinated allogamous plant. Heredity 71, 64-73.   DOI   ScienceOn
14 Soltis, D. E., C. H. Haufler, D. C. Darrow and G. J. Gastony. 1983. Starch gel electrophoresis of ferns: A compilation of grinding buffers, gel and electrode buffers, and staining schedules. Am. Fern. J. 73, 9-27.   DOI   ScienceOn
15 Sakai, R. R. and N. L. Oden. 1983. Spatial pattern of sex expression in silver maple (Acer saccharium L.): Morisita's index and spatial autocorrelation. Am. Nat. 122, 489-508.   DOI   ScienceOn
16 Sokal, R. R and N. L. Oden. 1978a. Spatial autocorrelation in biology 1. Methodology. Biol. J. Linn. Soc. 10, 199-228.   DOI
17 Parker, K. C., J. L. Hamrick, A. J. Parker and J. D. Nason. 2001. Fine scale genetic structure in Pinus clausa (Pinaceae) populations: effects of distribution history. Heredity 87, 99-113.   DOI   ScienceOn
18 Levy, F. and C. L. Neal. 1999. Spatial and temporal genetic structure in chloroplast and allozyme markers in Phacelia dubia implicate genetic drift. Heredity 82, 422-431.   DOI   ScienceOn
19 Argyres, A. Z. and J. Schmitt. 1991. Microgeographic genetic structure of morphological and life history traits in a natural population of Impatiens capensis. Evolution 45, 178-189.   DOI   ScienceOn
20 Cliff, A. D. and J. K. Ord. 1971. Evaluating the percentage points of a spatial autocorrelation coefficient. Geographical Analysis 3, 51-62.
21 Van Dijk, H. 1987. A method for the estimation of gene flow parameters from a population structure caused by restricted gene flow and genetic drift. Theor. Appl. Genet. 73, 724-736.   DOI   ScienceOn
22 Barrett, S. C. H., C. G. Eckert and B. C. Husband. 1993. Evolutionary processes in aquatic plant populations. Aquat. Bot. 44, 105-145.   DOI   ScienceOn