Browse > Article
http://dx.doi.org/10.5352/JLS.2007.17.2.204

Glutamine Residue at 276 of smooth muscle α-tropomyosin is primarily responsible for higher actin affinity  

Jung, Sun-Ju (Department of Genetic Engineering, Daegu University)
Cho, Young-Joon (Department of Genetic Engineering, Daegu University)
Publication Information
Journal of Life Science / v.17, no.2, 2007 , pp. 204-210 More about this Journal
Abstract
Previous reports indicated that the carboxyl terminal residues, glutamine276-threonine277 in particular, were important for actin affinity of the unacetylated smooth ${\alpha}-tropomyosin$. To determine the role of the glutamine and threonine residues in C-terminal region in actin binding, we constructed mutant striated muscle ${\alpha}-tropomyosin$ (TMs), in which these two residues were individually substituted. These mutant tropomyosins, designated TM18 (HT) and TM19 (QA), were overexpressed in E. coli as an either unacetylated form or Ala-Ser. (AS) dipeptide fusion form, and were analyzed F-actin affinity by cosedimentation. Unacetylated TM19 (QA) bound to actin approximately three times stronger than TM18 (HT) and much stronger than ST (HA). AS/TM19 (QA) showed four times stronger, in actin affinity than AS/ST (HA) while AS/TM14 (QT) bound to actin stronger to some extent than AS/TM18 (HT). These results suggested that the presence of Gln residue at 276 be primarily attributed to higher actin affinity of smooth ${\alpha}-tropomyosin$.
Keywords
recombinant tropomyosin; actin affinity; carboxyl terminal; overlapping region;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bradford, M. M. 1976. A rapid and sensitive method of the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254   DOI   ScienceOn
2 Yang, Y. Z., E. D. Korn and E. Eisenberg. 1979. Cooperative binding of tropomyosin to muscle and Acanthamoeba actin. J. Biol. Chem. 254, 2084-2088
3 Monteiro, P. B., R. C. Lataro, J. A. Ferro and F. d. C. Reinach. 1994. Functional ${\alpha}$-tropomyosin produced in Escherichia coli. A dipeptide extension can substitute the amino terminal acetyl group. J. Biol. Chem. 269, 10461-10466
4 Moraczewska, J., K. Nicholson-Flynn and S. E. Hitchcock-DeGregori. 1999. The ends of tropomyosin are major determinants of actin affinity and myosin subfragment I-induced binding of F-actin in open state. Biochemistry 38, 15885-15892   DOI   ScienceOn
5 Palm, T., N. J. Greenfield and S. E. Hitchcock-DeGregori 2003. Tropomyosin ends determine the stability and functionality of overlap and troponin T complexes. Biophys. J. 84, 3181-3189   DOI   ScienceOn
6 Palm, T., S. Graboski, S. E. Hitchcock-DeGregori and N. J. Greenfield. 2001. Disease-causing mutations in cardiac troponin T: identification of a critical tropomyosin-binding region. Biophys. J. 81, 2827-2837   DOI   ScienceOn
7 Perry, S. V. 2001. Vertebrate tropomyosin: distribution, properties and function. J. Muscle Res. Cell Motil. 22, 5-49   DOI   ScienceOn
8 Pittenger, M. F., J. A. Kazzaz and D. M. Helfman. 1994. Functional properties of non-muscle tropomyosin isoforms. Curr. Opin. Cell Biol. 6, 96-104   DOI   ScienceOn
9 Ruiz-Opazo, N. and B. Nadal-Ginard. 1987. ${\alpha}$-tropomyosin gene organization. Alternative splicing of duplicated isotype-specific exons accounts for the production of smooth and striated muscle isoforms. J. Biol. Chem. 262, 4755-4765
10 Tobacman L. S. 1996. Thin filament-mediated regulation of cardiac contraction. Annu. Rev. Physiol. 58, 447-81   DOI   ScienceOn
11 Hammell, R. and S. E. Hitchcock-DeGregori. 1996. Mapping the functional domains within the carboxyl terminus of alpha-tropomyosin encoded by the alternatively spliced ninth exon. J. Biol. Chem. 271, 4236-4242   DOI
12 Urbancikova, M. and S. E. Hltchcock-DeGregori. 1994. Requirement of amino-terminal modification for striated muscle ${\alpha}$-tropomyosin function. J. Biol. Chem. 269, 24310-24315
13 Greenfield, N. J., G. V .T. Swapna, Y. Huang, T. Palm, S. Graboski, G. T. Montelione and S. E. Hitchcock-DeGregori. 2003. The structure of the carboxyl terminus of striated ${\alpha}$-tropomyosin in solution reveals an unusual parallel arrangement of interacting ${\alpha}$-helices. Biochemistry 42, 614-619   DOI   ScienceOn
14 Gunning, P. W., G. Schevzov, A. J. Kee and E. C. Hardeman. 2005. Tropomyosin isoforrns: dividing rods for actin cytoskeleton function. Trends Cell Biol. 15, 333-341   DOI   ScienceOn
15 Heald, R. W. and S. E. Hitchcock-DeGregori. 1988. The structure of the amino terminus of tropomyosin is critical for binding to actin in the absence and presence of troponin J. Biol. Chem. 263, 5254-5259
16 Jagatheesan, G., S. Rajan, N. Petrashevskaya, A. Schwartz, G. Bolvin, S. Vahebi, P. DeTombe, R. J. Solaro, E. Labitzke, G. Hillard and D. W. Wieczorek. 2003. Functional importance of the carboxyl-terminal region of striated muscle tropomyosin. J. Biol. Chem. 278, 23204-23211   DOI   ScienceOn
17 Jung, S. J., S. M. Seo, K. H. Suh, J. S. Yang and Y. J. Cho. 2001. Effect of three amino acid residues at the carboxyl terminus in unacetylated ${\alpha}$-tropomyosin on actin affinity. J. Life Science 11, 1-6
18 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685   DOI   ScienceOn
19 Cho, Y. and S. E. Hitchcock-DeGregori. 1991. Relationship between alternatively spliced exons and functional domains in tropomyosin. Proc. Natl. Acad. Sci. USA 88, 10153-10157   DOI   ScienceOn
20 McLachlan, A. D. and M. Stewart. 1975. Tropomyosin coiled-coil interactions: evidence for an unstaggered structure. J. Mol Biol. 98, 293-304   DOI
21 Cho, Y. J. 2000. The carboxyl terminal amino acid residues glutamine 276 - threonine 277 are important for actin affinity of the unacetylated smooth $\alpha$-tropomyosin. J. Biochem. Mol. Biol. 33, 531-536
22 Cho, Y. J. 2004 Functions of ${\alpha}$-tropomyosin are mainly dependent upon the local structures of the amino terminus. J. Life Science 14, 770-777   DOI   ScienceOn
23 Cho, Y. J., J. Liu and S. E. Hitchcock-DeGregori. 1990. The amino terminus of muscle tropomyosin is a major determinant for function. J. Biol. Chem. 265, 538-545
24 Gaffin, R. D., C. W. Tong, C. Z. Zaweija, T. E. Hewett, R. Klevitsky, J. Robbins and M. Muthuchamy. 2004. Charged residue alterations in the inner-core domain and carboxy-terminus of ${\alpha}$-tropomyosin differentially affect mouse cardiac muscle contractility. J. Physiol. 561, 777-791   DOI   ScienceOn
25 Gaffin, R. D., K Gokulan, J. C. Sacchettini, C. W. Tong, T. E. Hewett, R. Klevitsky, J. Robbins and M. Muthuchamy. 2004. Charged residue changes in the carboxy-terminus of ${\alpha}$-tropomyosin alter mouse cardiac muscle contractility. J. Physiol. 556, 531-543   DOI   ScienceOn
26 Greenfield N. J., T. Palm and S. E. Hitchcock-DeGregori. 2002. Structure and interactions of the carboxyl terminus of striated muscle a-tropomyosin: it is important to be flexible. Biophys. J. 83, 2754-2766   DOI   ScienceOn
27 Greenfield, N. J. and S. E. Hitchcock-DeGregori. 1995. The stability of tropomyosin, a two-stranded coiled-coil protein, is primarily a function of the hydrophobicity of residues at the helix-helix interface. Biochemistry 34, 16797-16805   DOI   ScienceOn