Browse > Article
http://dx.doi.org/10.5352/JLS.2006.16.5.859

Screening of Endogenous Maize (Zea mays) Substances Enhancing Auxin-induced Inward Curvature in Coleoptilar Slits  

Park, Woong-June (Graduate Program for RNA Biology, Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University)
Publication Information
Journal of Life Science / v.16, no.5, 2006 , pp. 859-865 More about this Journal
Abstract
When thin slits (e.g., $1mm{\times}10mm$) of maize (Zea mays) coleoptiles were floated on a buffer, they spontaneously curved outward because of unbalanced tissue tension between inner and outer faces. Exogenously applied auxin induced inward curvature of the thin strip of the maize coleoptile in a dose-dependent manner. This bioassay system was used to screen endogenous substances that work together with auxin. In methanol extract of maize coleoptiles including the leaves inside, Active fractions that promote the auxin-induced inward curvature of maize coleoptile slices were found. The curvature-enhancing activity of the extract was not related to energy supply. The active substances were adsorbed to $C_{18}$ cartridges even at pH 10 and eluted in two fractions by 50% and 80% methanol. These substances were named as Curvature-Enhancing Factor-1 (CEF-1) and Curvature-Enhancing Factor-2 (CEF-2), respectively. The CEF-2 was resolved on a reversed phase $C_{18}$ column by HPLC.
Keywords
Auxin-induced curvature; coleoptile; endogenous regulator; Zea mays;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Campbell, J. A., A. Drake, V. W. K. Lee and S. Strother. 1995. A putative oligosaccharin growth promoter from Vitis vinifera L. primary cell walls. Ann. Bot. 75, 359-363   DOI   ScienceOn
2 Bellincampi, D., G. Salvi, G. De Lorenzo and F. Cervone. 1993. Oligogalacturonides inhibit the formation of roots on tobacco explants. Plant J. 4, 207-213   DOI   ScienceOn
3 Anai, T., H. Aizawa, N. Ohtake, S. Kosemura, S. Yamamura and K. Hasekawa. 1996. A new auxin-inhibiting substance, 4-Cl-6,7-dimethoxy-2-benzoxa- zolinone, from light-grown maize shoots. Phytochem. 42, 273-275   DOI
4 Rohrig, H., J. Schmidt, R. Walden, I. Czaja, E. Miklasevics, U. Wieneke, J. Schell and M. John. 1995. Growh of tobacco protoplast stimulated by synthetic lipochitooligosaccharides. Science 269, 841-843   DOI   ScienceOn
5 Kimura, Y., A. Tietz and S. Tamura. 1975. $Stigmasteryl-{\beta}-D-glucoside$ as an auxin synergist. Planta 126, 289-292   DOI   ScienceOn
6 Auxtova, O., D. Liskova, D. Kakoniova, M. Kubackova, S. Karacsonyi and L. Bilisics. 1995. Effect of galactoglucomannan- derived oligosaccharides on elongation growth of pea and spruce stem segments stimulated by auxin. Planta 196, 420-424   DOI
7 McDougall, G. J. and S. C. Fry. 1990. Xyloglucan oligosaccharides promote growth and activate celullase: evidence for a role of cellulase in cell expansion. Plant Physiol. 93, 1042-1048   DOI   ScienceOn
8 Corcoran, M. R., T. A. Geissman and B. Phinney. 1972. Tannins as gibberellin antagonists. Plant Physiol. 49, 323-330   DOI   ScienceOn
9 Nitsch, J. P. and C. Nitsch. 1961. Growth factors in the tomato fruit. pp. 687-707, In Klein R. M. Plant Growth Regulation. Iowa State University Press, Ames
10 Sakurai, N., K. Shibata and S. Kamisaka. 1975. Stimulation of auxin-induced elongation of cucumber hypocotyl sections by dihydroconiferyl alcohol. Dihydroconiferyl alcohol inhibits indole-3-acetic acid degradation in vivo and in vitro. Plant Cell Physiol. 16, 845-855
11 Shibata, K., T. Kubota and S. Kamisaka. 1975. Dihydroconiferyl alcohol as a gibberellin synergist in inducing lettuce hypocotyl elonagtion. An assessment of structure-activity relationships. Plant Cell Physiol. 16, 871-877
12 Ricci, A., C.A. Maggiali, A. Torelli, S. Amorosi, F. Ronchini and C. Branca. 1996. Methoxylation modifies the activity of 1,2-benzisoxazole-3-acetic acid: 6,7-dimethoxy- 1,2-benzisoxazole-3-acetic acid is an auxin antagonist in cytokinin mediated processes. Plant Sci. 117, 151-158   DOI   ScienceOn
13 Mandava, N. B. 1988. Plant growth-promoting brassinosteroids. Annu. Rev. Plant Physiol. 53, 453-461
14 Dyer, M. I., A. M. Moon, M. R. Brown and D. A. Grossley. 1995. Grasshopper crop and midgut extract effects on plants: an example of reward feedback. Proc. Natl. Acad. USA 92, 5475-5478
15 Hertel, R. 1993. A critical view on proposed hormone action: The example of auxin. pp. 1-15, In Smith C. J., J. Gallon, D. Chiatante and G. Zocchi (eds) Biochemical Mechanism of Growth Regulation. Oxford Univ. Press, Oxford
16 Venis, M. A. and P. J. Watson. 1978. Naturally occurring modifiers of auxin-receptor interaction in corn: Identification as benzoxazolinones. Planta 142, 103-107   DOI   ScienceOn
17 York, W. S., A. G. Darvill and P. Albersheim. 1984. Inhibition of 2,4-dichlorophnoxyacetic acid-stimulated elongation of pea stem segments by a xyloglucan oligosaccharide. Plant Physiol. 75, 295-297   DOI   ScienceOn
18 McDougall, G. J. and S. C. Fry. 1989a. Anti-auxin activity of xyloglucan oligosaccharides: the role of groups other than the terminal ${\alpha}-L-fucose$ residue. J. Exp. Bot. 40, 233- 238   DOI
19 McDougall, G.J. and S.C. Fry. 1989b. Structure-activity relationships for xyloglucan oligosaccharides with antiauxin activity. Plant Physiol. 89, 883-887   DOI   ScienceOn
20 Branca, C., G. De Lorenzo and F. Cervone. 1988. Competitive inhibition of auxin-induced elongation by ${\alpha}-D-oligogalacturonides$ in pea stem segments. Physiol. Plant. 72, 499-504   DOI   ScienceOn
21 Shibata, K., T. Kubota and S. Kamisaka. 1974. Isolation and chemical identification of a lettuce cotyledon factor, a synergist of the gibberellin action in inducing lettuce hypocotyl elogation. Plant Cell Physiol. 15, 191-194
22 McDougall, G. J. and S. C. Fry. 1988. Inhibition of auxin- stimulated growth of pea stem segments by a specific nonasaccharide of xyloglucan. Planta 175, 412-416   DOI   ScienceOn
23 Faulkner, I. L. and P. H. Rubery. 1992. Flavonoids and flavonoid sulphates as probes of auxin-transport regulation in Cucurbita pepo hypocotyl segments and vesicles. Planta 186, 618-625
24 Hasegawa, K., S. Togo, M. Urashima, J. Mizutani, S. Kosemura and S. Yamamura. 1992. An auxin-inhibiting substance from light-grown maize shoots. Phytochem. 31, 3673-3676   DOI   ScienceOn
25 Kefford, N. P. 1955a. The growth substances separated from plant extracts by chromatography I. J. Exp. Bot. 6, 129-151   DOI
26 Kefford, N. P. 1955b. The growth substances separated from plant extracts by chromatography II. The coleoptile and root elongation properties of the growth substances in plant extracts. J. Exp. Bot. 6, 245-255   DOI
27 Hoshi-Sakoda, M., K. Usui, K. Ishizuka, S. Kosemura, S. Yamamura and K. Hasegawa. 1994. Structure-activity relationships of benzoxazolinones with respect to auxin-induced growth and auxin-binding protein. Phytochem. 37, 297-300   DOI   ScienceOn
28 Firn, R.D. 1986. Growth substance sensitivity: The need for clearer ideas, precise terms and purposeful experiments. Physiol. Plant. 67, 267-272   DOI
29 Letham, D. S. 1978. Naturally-occuring plant growth regulators other than the principal hormones of higher plants. pp. 349-417, In Letham, D. S., P. B. Goodwin and T, J, V. Higgins (eds), Phytohormones and related compounds: A comprehensive treatise. Elsevier/North-Holland Biomedical Press, Amsterdam
30 Jacobs, M. and P. H. Rubery. 1988. Naturally occurring auxin transport regulators. Science 241, 346-349   DOI   ScienceOn