Browse > Article
http://dx.doi.org/10.5352/JLS.2006.16.4.632

Regulation of Photosynthesis Genes (puf, puc, puhA, bchC, bchE, bchF, and bchI) in Rhodobacter sphaeroides  

Ko, In-Jeong (Korea Science Academy)
Kim, Yong-Jin (Department of Microbiology, Pusan National University)
Lee, Jin-Mok (Department of Microbiology, Pusan National University)
Shin, Sun-Joo (Department of Microbiology, Pusan National University)
Oh, Jeong-Il (Department of Microbiology, Pusan National University)
Publication Information
Journal of Life Science / v.16, no.4, 2006 , pp. 632-639 More about this Journal
Abstract
Here we examined the expression patterns and regulation of seven photosynthesis (PS) genes (puf, puc, puhA, bchC, bchE, bchF, and bchI) in the anoxygenic photosynthetic bacterium, Rhodobacter sphaeroides, based on lacZ reporter gene assay. Expression of the tested PS genes, except puhA and bchI, were strongly induced in R. sphaeroides grown under anaerobic conditions relative to that under aerobic conditions. The puhA and bchI genes appear to form the operons together with bchFNBHLM-RSP0290 and crtA, respectively. Expression of the puf, puc, and bchCXYZ operons in R. sphaeroides grown photosynthetically was proportional to the incident light intensity, whereas that of bchFNBHLM(RSP0290-puhA) was inversely related to light intensity. Expression of bchEJG was lowest under medium-light photosynthetic conditions $(10\;W/m^2)$ and highest under high light conditions $(100\;W/m^2)$. The regulation of PS genes by the three major regulatory systems involved in oxygen- and light-sensing in R. sphaeroides is as following: puf and bchC are regulated by both the PpsR repressor and the PrrBA two-component system. The puc operon is under control of PpsR, FnrL, and PrrBA system. Expression of bchE is controlled by FnrL and PrrBA two-component system, whereas bchF is regulated exclusively by PpsR. It was demonstrated that the PpsR repressor is responsible for high-light repression of bchF and that FnrL might be involved in perceiving the cellular redox state in addition to sensing $O_2$ itself.
Keywords
FnrL; photosynthesis gene; PrrBA two-component system; PpsR repressor; redox sensing; Rhodobacter sphaeroides;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Elsen, S., W. Dischert, A. Colbeau, and C. E. Bauer. 2000. Expression of uptake hydrogenase and molybdenum nitrogenase in Rhodobacter capsulatus is coregulated by the RegB-RegA two-component regulatory system. J. Bacteriol. 182, 2831-2837   DOI
2 Gomelsky, M., and S. Kaplan. 1995. appA, a novel gene encoding a trans-acting factor involved in the regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J. Bacteriol. 177, 4609-4618   DOI
3 Happ, H. N., S. Braatsch, V. Broschek, L. Osterloh, and G. Klug. 2005. Light-dependent regulation of photosynthesis genes in Rhodobacter sphaeroides 2.4.1 is coordinately controlled by photosynthetic electron transport via the PrrBA two-component system and the photoreceptor AppA. Mol. Microbiol. 58, 903-914   DOI   ScienceOn
4 Oh, J. I., J. M. Eraso, and S. Kaplan. 2000. Interacting regulatory circuits involved in orderly control of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J. Bacteriol. 182, 3081-3087   DOI
5 Simon, R., U. Priefer, and A. Puhler. 1983. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Technol. 1, 784-791   DOI
6 Zeilstra-Ryalls, J., M. Gomelsky, J. M. Eraso, A. Yeliseev, J. O'Gara, and S. Kaplan. 1998. Control of photosystem formation in Rhodobacter sphaeroides. J. Bacteriol. 180, 2801-2809
7 Roh, J. H., W. E. Smith, and S. Kaplan. 2004. Effects of oxygen and light intensity on transcriptome expression in Rhodobacter sphaeroides 2.4.1. Redox active gene expression profile. J. Biol. Chem. 279, 9146-9155   DOI   ScienceOn
8 Gomelsky, M., and S. Kaplan. 1998. AppA, a redox regulator of photosystem formation in Rhodobacter sphaeroides 2.4.1, is a flavoprotein. Identification of a novel FAD binding domain. J. Biol. Chem. 273, 35319-35325   DOI   ScienceOn
9 Suzuki, J. Y., D. W. Bollivar, and C. E. Bauer. 1997. Genetic analysis of chlorophyll biosynthesis. Annu. Rev. Genet. 31, 61-89   DOI   ScienceOn
10 Eraso, J. M., and S. Kaplan. 1995. Oxygen-insensitive synthesis of the photosynthetic membranes of Rhodobacter sphaeroides: a mutant histidine kinase. J. Bacteriol. 177, 2695-2706   DOI
11 Lee, J. K., and S. Kaplan. 1995. Transcriptional regulation of puc operon expression in Rhodobacter sphaeroides. Analysis of the cis-acting downstream regulatory sequence. J. Biol. Chem. 270, 20453-20458   DOI   ScienceOn
12 Horne, I. M., J. M. Pemberton, and A. McEwan. 1996. Photosynthesis gene expression in Rhodobacter sphaeroides is regulated by redox changes which are linked to electron transport. Microbiology 142, 2831-2838   DOI   ScienceOn
13 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
14 van Neil, C. B. 1944. The culture, general physiology, morphology, and classification of the non-sulfur purple and brown bacteria. Bacterial Rev. 8, 1-118
15 Yeliseev, A. A., J. M. Eraso, and S. Kaplan. 1996. Differential carotenoid composition of the B875 and B800-850 photosynthetic antenna complexes in Rhodobacter sphaeroides 2.4.1: involvement of spheroidene and spheroidenone in adaptation to changes in light intensity and oxygen availability. J. Bacteriol. 178, 5877-5883
16 Zeilstra-Ryalls, J. H., K. Gabbert, N. J. Mouncey, S. Kaplan, and R. G. Kranz. 1997. Analysis of the fnrL gene and its function in Rhodobacter capsulatus. J. Bacteriol. 179, 7264-7273   DOI
17 Zeilstra-Ryalls, J. H., and S. Kaplan. 1998. Role of the fnrL gene in photosystem gene expression and photosynthetic growth of Rhodobacter sphaeroides 2.4.1. J. Bacteriol. 180, 1496-1503
18 Jessee, J. 1986. New subcloning efficiency competent cells: $>1\;{\times}\;10^6$ transformants/ug. Focus 8, 9
19 Kiley, P. J., and S. Kaplan. 1988. Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroides. Microbiol. Rev. 52, 50-69
20 Kiley, P. J., and H. Beinert. 1998. Oxygen sensing by the global regulator, FNR: the role of the iron-sulfur cluster. FEMS Microbiol. Rev. 22, 341-352   DOI
21 Lee, J. K., and S. Kaplan. 1992. cis-acting regulatory elements involved in oxygen and light control of puc operon transcription in Rhodobacter sphaeroides. J. Bacteriol. 174, 1146-1157   DOI
22 Mao, L., C. Mackenzie, J. H. Roh, J. M. Eraso, S. Kaplan, and H. Resat. 2005. Combining microarray and genomic data to predict DNA binding motifs. Microbiology 151, 3197-3213   DOI   ScienceOn
23 Masuda, S., and C. E. Bauer. 2002. AppA is a blue light photoreceptor that antirepresses photosynthesis gene expression in Rhodobacter sphaeroides. Cell 110, 613-623   DOI   ScienceOn
24 Oh, J. I., and S. Kaplan. 1999. The cbb3 terminal oxidase of Rhodobacter sphaeroides 2.4.1: structural and functional implications for the regulation of spectral complex formation. Biochemistry 38, 2688-2696   DOI   ScienceOn
25 Oh, J. I., and S. Kaplan. 2000. Redox signaling: globalization of gene expression. EMBO J. 19, 4237-4247   DOI   ScienceOn
26 Oh, J. I., and S. Kaplan. 2001. Generalized approach to the regulation and integration of gene expression. Mol. Microbiol. 39, 1116 - 1123   DOI   ScienceOn
27 Choudhary, M., and S. Kaplan. 2000. DNA sequence analysis of the photosynthesis region of Rhodobacter sphaeroides 2.4.1. Nucleic Acids Res. 28, 862-867   DOI
28 Eraso, J. M., and S. Kaplan. 1994. prrA, a putative response regulator involved in oxygen regulation of photosynthesis gene expression in Rhodobacter sphaeroides. J. Bacteriol. 176, 32-43   DOI
29 Davis, J., T. J. Donohue, and S. Kaplan. 1988. Construction, characterization, and complementation of a Puf- mutant of Rhodobacter sphaeroides. J. Bacteriol. 170, 320-329   DOI
30 Dryden, S. C., and S. Kaplan. 1990. Localization and structural analysis of the ribosomal RNA operons of Rhodobacter sphaeroides. Nucleic Acids Res. 18, 7267-7277   DOI   ScienceOn
31 Eraso, J. M., and S. Kaplan. 1996. Complex regulatory activities associated with the histidine kinase PrrB in expression of photosynthesis genes in Rhodobacter sphaeroides 2.4.1. J. Bacteriol. 178, 7037-7046   DOI
32 Gomelsky, M., I. M. Horne, H. J. Lee, J. M. Pemberton, A.G. McEwan, and S. Kaplan. 2000. Domain structure, oligomeric state, and mutational analysis of PpsR, the Rhodobacter sphaeroides repressor of photosystem gene expression. J. Bacteriol. 182, 2253-2261   DOI
33 Gomelsky, M., and S. Kaplan. 1995. Genetic evidence that PpsR from Rhodobacter sphaeroides 2.4.1 functions as a repressor of puc and bchF expression. J. Bacteriol. 177, 1634-1637   DOI
34 Gomelsky, M., and S. Kaplan. 1997. Molecular genetic analysis suggesting interactions between AppA and PpsR in regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J. Bacteriol. 179, 128-134   DOI