Browse > Article
http://dx.doi.org/10.5352/JLS.2006.16.3.447

Characterization of Arabidopsis Histidine Kinase 3 and Proteomic Analysis of Its Mutant  

Liang Ying-Shi (Division of Applied Life Science, Gyeongsang National University)
Cha Joon-Yung (Division of Applied Life Science, Gyeongsang National University)
Ermawati Netty (Division of Applied Life Science, Gyeongsang National University)
Jung Min-Hee (Division of Applied Life Science, Gyeongsang National University)
Lee Kon-Ho (Division of Applied Life Science, Gyeongsang National University)
Son Dae-Young (Division of Applied Life Science, Gyeongsang National University)
Publication Information
Journal of Life Science / v.16, no.3, 2006 , pp. 447-453 More about this Journal
Abstract
Histidine kinase plays important roles in signal transduction in plant. We characterized the function of Arabidopsis histidine kinase 3 (AHK3) and analyzed the expression patterns of genes and proteins in its mutant ahk3 by trans-zeatin (t-zeatin). The ahk3 exhibited decreased sensitivity to t-zeatin during callus formation, seedling growth, and leaf senescence. From proteomic analysis of ahk3, eukaryotic translation initiation factor 5A-2, auxin binding glutathione S-transferase, and NDPK1 were identified not to be induced by t-zeatin, when compared to the wild-type. In addition, the expression levels of ARR4 and ARR16 among A-type response regulators (ARRs) markedly decreased in ahk3 by t-zeatin treatment. These results suggest that AHK3 plays an important role in cytokinin signaling and the proteins identified from proteomic analysis and specific ARRs, ARR4 and ARR16 may be directly or indirectly associated in AHK3-mediated cytokinin signaling.
Keywords
Arabidopsis histidine kinase 3; proteomics; response regulators; t-zeatin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zettl. R., J. Schell and K. Palme. 1994. Photoaffinity labeling of Arabidopsis thaliana plasma membrane vesicles by $5-azido-[7-^3H]indole-3-acetic$ acid: identification of a glutathione S-transferase. Proc. Natl. Acad. Sci. USA 91, 689-693
2 Zimmermann, S., A. Baumann, K. Jaekel, I. Marbach, D. Engelberg and H. Frohnmeyer. 1999. UV-responsive genes of Arabidopsis revealed by similarity to the Gcn4-mediated UV response in yeast. J. Biol. Chem. 274, 17017-17024   DOI
3 Kakimoto, T. 1996. CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274, 982-985   DOI   ScienceOn
4 Kim, S. T., K. S. Cho, Y. S. Jang and K. Y. Kang. 2001. Two-dimensional electrophoretic analysis of rice proteins by polyethylene glycol fractionation for protein arrays. Electrophoresis 22, 2103-2109   DOI   ScienceOn
5 Mok, D. W. S and M, C. Mok. 2001. Cytokinin metabolism and action. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 89-118   DOI
6 Nishimura. C., Y. Ohashi, S. Sato, T. Kato, S. Tabata and C. Ueguchi. 2004. Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell 16, 1365-1377   DOI   ScienceOn
7 Gharahdaghi, F., C. R. Weinberg, D. A. Meagher, B. S. Imai and S. M. Mische. 1999. Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: A method for the removal of silver ions to enhance sensitivity. Electrophoresis 20, 601-605   DOI   ScienceOn
8 Laval-Martin, D. L. 1985. Spectrophotometric method of controlled pheophytinization for the determination of both chlorophylls and pheophytins in plant extracts. Anal. Biochem. 149, 121-129   DOI   ScienceOn
9 Ueguchi. C., H. Koizumi, T. Suzuki and T. Mizuno. 2001. Novel family of sensor histidine kinase genes in Arabidopsis thaliana. Plant Cell Physiol. 42, 231-235   DOI   ScienceOn
10 Moon. H., B. Lee, G. Choi, D. Shin, D. T. Prasad, O. Lee, S. S. Kwak, D. H. Kim, J. Nam, J. Bahk, J. C. Hong, S. Y. Lee, M. J. Cho, C. O. Lim and D. J. Yun. 2003. NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc. Natl. Acad. Sci. USA 100, 358-363
11 O'Farrell, P. H. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007-4021
12 Postel, E. H. 1998. NM23-NDP kinase. Int. J. Biochem. Cell Biol. 30, 1291-1295   DOI   ScienceOn
13 Urao. T., K. Yamaguchi-Shinozaki and K. Shinozaki. 2000. Two-component systems in plant signal transduction. Trends Plant Sci. 5, 67-74   DOI   ScienceOn
14 Yamada, H., T. Suzuki, K. Terada, K. Takei, K. Ishikawa, K. Miwa, T. Yamashino and T. Mizuno. 2001. The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol. 42, 1017-1023   DOI   ScienceOn
15 Blum, H., H. Beier and H. J. Gross. 1987. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8, 93-99   DOI
16 Gan, S and R. M. Amasino. 1995. Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270, 1986-1988   DOI   ScienceOn
17 Kiba, T., H. Yamada and T. Mizuno. 2002. Characterization of the ARR15 and ARR16 response regulators with special reference to the cytokinin signaling pathway mediated by the AHK4 histidine kinase in roots of Arabidopsis thaliana. Plant Cell Physiol. 43, 1059-1066   DOI   ScienceOn
18 Choi, G., H. Yi, J. Lee, Y. K. Kwon, M. S. Soh, B. Shin, Z. Luka, T. R. Hahn and P. S. Song. 1999. Phytochrome signalling is mediated through nucleoside diphosphate kinase 2. Nature 401, 610-613   DOI   ScienceOn
19 D'Agostino, I. B., J. Deruere and J. J. Kieber. 2000. Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol. 124, 1706-1717   DOI
20 Dixon, D. P., A. Lapthorn and R. Edwards. 2002. Plant glutathione transferases. Genome Biol. 3, REVIEWS 3004.1- 3004.10
21 Higuchi, M., M. S. Pischke, A. P. Mahonen, K. Miyawaki, Y. Hashimoto, M. Seki, M. Kobayashi, K. Shinozaki, T. Kato, S. Tabata, Y. Helariutta, M. R. Sussman and T. Kakimoto. 2004. TIn planta functions of the Arabidopsis cytokinin receptor family. Proc. Natl. Acad. Sci. USA 101, 8821-8826
22 Hwang, I., H. C. Chen and J, Sheen. 2002. Two-component signal transduction pathways in Arabidopsis. Plant Physiol. 129, 500-515   DOI   ScienceOn
23 Jenkins, Z. A., P. G. Haag and H. E. Johansson. 2001. Human EIF5A2 on chromosome 3q25-q27 is a phylogenetically conserved vertebrate variant of eukaryotic translation initiation factor 5A with tissue-specific expression. Genomics 71, 101-109   DOI   ScienceOn
24 Thompson, J. E., M. T. Hopkins, C. Taylor and T. W. Wang. 2004. Regulation of senescence by eukaryotic translation initiation factor 5A: implications for plant growth and development. Trends Plant Sci. 9, 174-179   DOI   ScienceOn
25 Miller, C. O., F. Skoog, F. S. Okumura, M. H. von Saltza and F. M. Strong. 1956. Isolation, structure and synthesis of kinetin, a substance promoting cell division. J. Am. Chem. Soc. 78, 1375-1380   DOI
26 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254   DOI   ScienceOn