Browse > Article
http://dx.doi.org/10.5352/JLS.2005.15.6.847

Effects of Carbon Source on Production of Leucocin A from Transformed Saccharomyces cerevisiae  

Lee Sung-ll (Department of Bioscience and Biotechnology, College of Engineering, Silla University)
Park Jin-Yong (Department of Bioscience and Biotechnology, College of Engineering, Silla University)
Jung Jong-Ceun (Department of Bioscience and Biotechnology, College of Engineering, Silla University)
Lee Dong-Ceun (Department of Bioscience and Biotechnology, College of Engineering, Silla University)
Lee Sang-Hyeon (Department of Bioscience and Biotechnology, College of Engineering, Silla University)
Ha long-Myung (Department of Bioscience and Biotechnology, College of Engineering, Silla University)
Ha Bae-Jin (Department of Bioscience and Biotechnology, College of Engineering, Silla University)
Lee Jae-Hwa (Department of Bioscience and Biotechnology, College of Engineering, Silla University)
Publication Information
Journal of Life Science / v.15, no.6, 2005 , pp. 847-850 More about this Journal
Abstract
The aim of this study was to increase production of leucocin A, a kind of bacteriocin, in a transformed variety of S. cerevisiae. We investigated optical density, total secreted protein, protease activity, and antibacterial activity for the transformed S. cerevisiae in different carbon sources. The production of leucocin A growth-associated, and antibacterial activity, according to carbon source, was in the order of sucrose, glucose, glycerol, and fructose. Antibacterial activity was $10.6\%$ higher in the presence of sucrose than glucose. This is the first report regarding the effect of carbon sources on the production of leucocin A in transformed S. cerevisiae, as far as we ascertain. Our results could prove useful in the industrial production of natural preservatives.
Keywords
leucocin A; Saccharomyces cerevisiae; sucrose; antibacterial activity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lee, S. I., D. G. Lee., J. O. Lee., D. H. Shim., C. H. Joo., O. S. Kim., S. H. Lee, and J. H. Lee. 2004. Antibacterial activity of yeast transformed with leucocin A Kor. J. Biotechnol. Bioeng. 04, 291-295
2 Battaglino, R A., M. Huergo, A M. R Pilosof, and G. Bartholoma. 1991. Culture requirement for the production of protease by Aspergillus oryzae in solid state fermentation. Appl. Microbiol. Biotechnol. 35, 292-296
3 Seo, H. P., C. H. Chung., S. K. Kim., R. A. Gross., D. L. Kaplan, and J. W. Lee. 2004. Mass production of pulluan with optimized concentration of carbon and nitrogen sources by Aureobasidium pullulans HP-2001 in a 100-L bioreactor with the inner pressure. J. Microbiol. Biotechnol. 14,237-242
4 S, K. Yalcin, and Z. Y. Ozbas. 2004. Effects of different substrates on growth and glycerol production kinetics of a wine yeast strain Saccharomyces cerevisiae Narince 3. Process Biochem. 39, 1285-1291   DOI   ScienceOn
5 Lee, S.-H. 2003. Establishment of a leucocin A producing Saccharomyces cerevisiae cell. J. Life Sci. 13, 712-717   DOI   ScienceOn
6 Reid, G., and J. Burton. 2002. Use of Lactobacillus to prevent infection by pathogenic bacteria. Microbes Infect. 4, 319-324   DOI   ScienceOn
7 Riley, M A and J. E. Wertz. 2002. Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie. 84, 357-364   DOI   ScienceOn
8 Tagg, G. R, A S. Dajani, and L. W. Wannamarker. 1976. Bacteriocin of gram-positive bacteria. Bacteriol. Rev. 40, 722-756
9 Davis, D. B., R, Dulbecco, N, H. Eisen, and S. H. Ginberg. 1990. Microbiology. 4 th ed. Lippincott company. Philadelphia. P A. 589-594
10 Delves-Broughton, J. 1990. Nisin and it's uses aa a food preservative. Food Technol. 44, 100-117
11 Cleveland, J., T. J. Montville., I. F. Nes, and M. L. Chikindas. 2001. Bacteriocins: safe natural antimicrobials for food. Int. J. Food Microbiol. 71, 1-20   DOI   ScienceOn
12 An, Cheol., 1993. Molecular genetics of bacteriocin production in lactic acid bacteria. Bioindustry 6, 12-23
13 An, Cheol., and M. E. Stiles. 1990. Plasmid-associated bacteriocin production by a strain of Carobacterium piscicola from meat. Appl. Environ. Microbiol. 56, 2503-2510
14 Anonymous. 1986. International acceptance of Nisin as a food additive. Aplin and Barrett Ltd
15 Matsumoto, T., S. Takahashi, M, Ueda, A, Tanaka, H., Fukuda, and A. Kondo. 2002. Preparation of high activity yeast whole cell bioctalysts by optimization of intracellular production of recombinant Rhizopus oryzae lipase. J. Mol. Catal. B-Ezzym 17, 143-149   DOI   ScienceOn
16 Calado, C. R. C, C, Almeida., J, M. S. Cabral., and L, P. Fonseca. 2003. Development of a fed-batch cultivation strategy for the enhanced production and secretion of cutinase by a recombinant Saccharomyces cerevisiae SU50 strain. J. Biosci. Bioeng. 96,141-148   DOI   ScienceOn