Browse > Article
http://dx.doi.org/10.5352/JLS.2005.15.3.359

Spatial Autocorrelation within Three Populations of Sasa borealis in Korea  

Huh Man Kyu (Department of Molecular Biology, Dongeui University)
Publication Information
Journal of Life Science / v.15, no.3, 2005 , pp. 359-364 More about this Journal
Abstract
Spatial autocorrelation was applied to microgeographic variations of Sasa borealis populations in Korea. Separate counts of each type of join (combination of genotypes at a single locus) for each allele, and for each distance class of separation, were tested for significant deviation from random expectations by calculating the Standard Normal Deviation. Moran's I was significantly different from the expected value in 25 of 150 cases $(16.7\%)$. Seven of these values $(4.7\%)$ were negative, indicating genetic dissimilarity among pairs of individuals in the ten distance classes. Populations of S. borealis are small in Korea, and are distributed with occasional cutting of seed-bearing stems used for sieves. Thus, artificial disturbance may contribute to the fact that the S. borealis population of Jirisan is unusual in lacking spatial genetic structure.
Keywords
Spatial autocorrelation; Moran's I; Sasa borealis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Levin, D. A. and H. W. Kerster. 1974. Gene flow in seed plants. Evol. Biol. 7, 139-220
2 Levin, D. A. 1984. Inbreeding depression and proximity-dependent crossing succession in Phlox drummondii. Evolution 38, 116-127   DOI   ScienceOn
3 Ohsawa, R, N. Furuya and Y. Ukai. 1993. Effects of spatially restricted pollen flow on spatial genetic structure of an animal-pollinated allogamous plant. Heredity 71, 64-73   DOI   ScienceOn
4 Price, M. and N. M. Waser. 1979. Pollen dispersal and optimal outcrossing in Delphinium Nelsoni. Nature 277, 294-297   DOI   ScienceOn
5 Slatkin, M. 1987. Gene flow and geographic structure of natural populations. Science 236, 787-792   DOI
6 Sokal, R. R .and N. L. Oden. 1978a. Spatial autocorrelation in biology 1. Methodology. Biol. J. Linn. Soc. 10, 199-228   DOI
7 Sakal, R. R. and N. L. Oden. 1978b. Spatial autocorrelation in biology 2. Some biological implications and four applications of evolutionary and ecological interest. Biol. J. Linn. Soc. 10, 229-249   DOI
8 Soltis, D. E., C. H. Haufler, D. C. Darrow and G. J. Gastony. 1983. Starch gel electrophoresis of ferns: A compilation of grinding buffers, gel and electrode buffers, and staining schedules. Am. Fern J. 73, 9-27   DOI   ScienceOn
9 Waser, N. M. and M. Price. 1983. Optimal and Actual Outcrossing in Plants, and the Nature of Plant Pollinator Interactions, pp. 341-360. In Jones, C. E. and R J. Little (eds.), Handbook of Experimental Pollination Biology, Van Nostrand Reinhold, NY
10 Weeden, N. F. and J. F. Wendel. 1989. Genetics of Plant Isozymes, pp. 46-72, In Soltis, D. E. and P. S. Soltis (eds.), Isozymes in Plant Biology, Dioscorides Press, Portland
11 Wright, S. 1978. Evolution and the Genetics of Populations Vol. 4. Variability within and among Natural Populations, Univ Chicago Press, Chicago, pp 580
12 Epperson, B. K. 1990. Spatial autocorrelation of genotypes under directional selection. Genetics 124, 757-771
13 Argyres, A. Z. and J. Schmit. 1991. Microgeographic genetic structure of morphologicaland life history traits in a natural population of Impatiens capensis. Evolution 45, 178-189   DOI   ScienceOn
14 Bradshaw, A. D. 1972. Some evolutionary consequences of being a plant. Evol. Biol. 5, 25-47
15 Ehrlich, P. R and P. H. Raven. 1969. Differentiation of populations. Science 165, 1228-1232   DOI
16 Epperson, B. K. 1995. Fine-scale spatial structure: correlations for individual genotypes differ from those for local gene frequencies. Evolution 49, 1022-1026   DOI   ScienceOn
17 Epperson, B. K. and R. W. Allard. 1989. Spatial autocorrelation analysis of the distribution of genotypes within populations of lodgepole pine. Genetics 121, 369-377
18 Epperson. B. K. and M. T. Clegg. 1986. Spatial autocorrelation analysis of flower color polyrnorphisrns within substructured populations of morning glory (Ipomoea purpurea). Am. Nat. 128, 840-858   DOI   ScienceOn
19 Dewey, S. E. and J. S. Heywood. 1988. Spatial genetic structure in a population of Psychotria nervosa. I. Distribution of genotypes. Evolution 42, 834-838   DOI   ScienceOn
20 Conner, J. K., S. Rush, S. Kercher and P. Tennetten. 1996. Measurements of natural selection on floral traits in wild radish (Raphanus raphanistrum). II. Selection through lifetime male and total fitness. Evolution 50, 1137-1146   DOI   ScienceOn
21 Schoen, D. J. and R. G. Latta. 1989. Spatial autocorrelation of genotypes in populations of Impatiens pallida and Impatiens capensis. Heredity 63, 181-189   DOI
22 Cliff, A. D. and J. K. Ord. 1981. Spatial Processes: Models and Applications. Pion, London
23 Bradshaw, A. D. 1984. Ecological Significance of Genetic Variation between Populations, pp. 213-228. In Dirzo, R. and J. Sarukhan (eds.), Perspectives on Plant Population Ecology, Sinauer Associates, Sunderland, MA