Browse > Article
http://dx.doi.org/10.5352/JLS.2005.15.1.033

Genetic Study of Mating System of Sasa borealis in Korea  

Huh Man Kyu (Department of Molecular Biology, dongeui University)
Roh Kwang Soo (Department of Biology, Keimyung University)
Publication Information
Journal of Life Science / v.15, no.1, 2005 , pp. 33-37 More about this Journal
Abstract
Sasa borealis Makino is distributed in East Asia such as Korea, Fushun in China, and Japan. Especially the species is only found in the high altitude (above 600 m) at mountain of cold regions including The Korean Peninsula. The level of genetic diversity and population structure of this species was surveyed using starch gel electrophoresis at putative five enzyme loci from three natural populations in Korea. Results from twelve loci indicated that genetic diversity was low. In addition, analysis of fixation indices revealed a substantial heterozygosity deficiency in some populations and loci. The reasons for the deficit of heterozygosity may be partly considered inbreeding, small population sizes, and mating of demes. S. borealis can reproduce extensively by producing rhizomes and potentially by sexually produced seeds. Rhizomes are generally long, prostate stems rooting at the nodes.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 Van Treuren, R., R. Bijlsma, W. Van Delden and N. J. Ouborg. 1991. The significance of genetic erosion in the process of extinction. 1. Genetic differentiation in Salvia pratensis and Scabiosa columbaria in relation to population size. Heredity 66, 181-189   DOI
2 Soltis, D. E., H. Haufer, D. C. Darrow and G. J. Gastony. 1983. Starch gel electrophoresis of ferns: A complication of grinding buffers, gel and electrode buffers, and staining schedules. Am. Fern J. 73, 9-27   DOI   ScienceOn
3 Weeden, N. F. and J. F. Wendel. 1989. Genetics of plant isozymes. pp. 46-72, In Soltis, D. E. and P. S. Soltis (eds.), Isozymes in Plant Biology, Dioscorides Press, Portland
4 Wright, S. 1965. The interpretation genetic population structure by F-statistics with special regard to systems of mating. Evolution 19, 395-420   DOI   ScienceOn
5 Fyfe, J. L. and N. T. J. Bailey. 1951. Plant breeding studies in leguminous forage crops. 1. Natural cross breeding in winter beans. J. Agri. Sci. 41, 371-378   DOI
6 Godt, M. J. W. and J. L. Hamrick. 1995. Low levels of allozyme differentiation between Pyxidanthera texa. Evolution 195, 159-168
7 Hamrick, J. L., Y. B. Linhart and J. B. Mitton. 1979. Relationships between life history characteristics and eletrophoretically detectable genetic variation in plant. Ann. Rev. Eco. System. 10, 173-200   DOI   ScienceOn
8 Hamrick, J. L. and M. J. W. Godt. 1989. Allozyme diversity in plant species. pp. 43-63, In Brown, A. H. D., M. 1. Clegg, A. L. Kaher and B. S. Weir (eds.), Plant Population Genetics, Breeding, and Genetic Resources, Sinauer Associates, Ins., Sunderland
9 Liengsiri, C., T. J. B. Boyle and F. C. Yeh. 1998. Mating system in Pterocarpus macrocarpus Kurz in Thailand. J. Hered. 89, 216-221   DOI   ScienceOn
10 Mitton, J. B., Y. B. Linhart, K. B. Sturgeon and J. L. Hamrick. 1979. Allozyme polymorphisms detected in mature needle tissue of Pondersa pine. J. Hered. 70, 86-89
11 Morgenstern, E. K 1972. Preliminary estimates of inbreeding in natural populations of black spruce, Picea mariana. Can. J. Bot. 14, 443-446
12 Murawski, D. A. and K. S. Bawa. 1994. Genetic structure and mating system of Stemonoporus oblongifolius (Dipterocarpaceae) in SriLanka. Am. J. Bot. 81, 155-160   DOI   ScienceOn
13 Ritland, K. and S. Jain. 1981. A model of for estimation of outcrossing rate and gene frequencies using n-independent loci. Heredity 47, 35-52   DOI
14 Aide, T. M. 1986. The influence of wind and animal pollination on variation in outcrossing rates. Evolution 40, 434-435   DOI   ScienceOn
15 Allard, R. W. 1975. The mating system and microevolution. Genetics 79, 115 -126
16 Brown, A. H. D. and R. W. Allard. 1970. Estimation of mating systems in open-pollinated maize populations using: isozyme polymorphism. Genetics 66, 133-145
17 Brown, A. H. D. 1990. Genetic characterization of plant mating systems. pp. 145-162, In Brown, A. H. D., M. T. Clegg, A. L. Kaher and B. S. Weir (eds.), Plant Papulation Genetics, Breeding, and Genetic Resources, Sinaur, Sunderland, MA
18 Charlesworth, D. and B. Charlesworth. 1987. Inbreeding depression and its evolutionary consequences. Ann. Rev. Eco. and Syst. 18, 237-268   DOI   ScienceOn
19 Brown, A. H. D., J. J. Burdon and A. M. Jarosz. 1989. Isozyme analysis of plant mating systems. pp. 73-86, In Soltis D. F. and P. S. Soltis (eds.), Isozyme Plant Biology, Dioscorides Press, Portland, Oregon
20 Brown, A. H. D. 1989. Genetic characterization of plant mating system. pp. 145-162, In Brown, A. H. D., M. T. Clegg, A. L. Kaher and B. S. Weir (eds.), Plant Papulation Genetics, Breeding, and Genetic Resources, Sinauer, Sunderland, MA
21 Falconer, D. S. 1981. Introduction to Quantitative Genetics. pp. 340, 2nd eds., John Wiley and Sons. New York
22 Fisker and Mathies. 1997. Mating system and inbreeding and outbreeding depression in the rare plant. Gentianella germanica (Gentianaceae). Am. J. Bot. 84, 1685-1692   DOI   ScienceOn