Browse > Article
http://dx.doi.org/10.5423/RPD.2019.25.4.213

Occurrence of Fusarium Species in Korean Sorghum Grains  

Choi, Jung-Hye (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration)
Nah, Ju-Young (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration)
Jin, Hyun-Suk (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration)
Lim, Su-Bin (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration)
Paek, Ji-Seon (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration)
Lee, Mi-Jeong (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration)
Jang, Ja-Yeong (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration)
Lee, Theresa (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration)
Hong, Sung Kee (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration)
Choi, Hyo-Won (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration)
Kim, Jeomsoon (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration)
Publication Information
Research in Plant Disease / v.25, no.4, 2019 , pp. 213-219 More about this Journal
Abstract
A total of 1,159 Fusarium strains were isolated from sorghum grown in Danyang and Youngwol in 2017 and 2018. The isolates were analyzed to reveal genetic, toxigenic and pathogenic characteristics. Phylogenetic analysis using TEF-1α and RPB2 genes showed that the samples were contaminated with at least 17 Fusarium species. Among them, F. graminearum, F. proliferatum, F. thapsinum, F. incarnatum, and F. asiaticum were dominant species. In F. graminearum and F. asiaticum, F. graminearum-15-acetyl deoxynivalenol chemotype and F. asiaticum-nivalenol chemotype were frequent. Six Fusarium species tested produced one or more mycotoxins, except F. thapsinum and FTSC 11. F. proliferatum and F. fujikuroi had FUM1 gene (76.0% and 81.6%, respectively) and some isolates produced high level of fumonisin (over 1,000 ㎍). F. proliferatum and F. thapsinum were more virulent than other species on sorghum. These results indicate that Fusarium species in sorghum might produce multiple mycotoxins.
Keywords
Fumonisin; Fusarium; Sorghum; Trichothecene;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Melake-Berhan, A., Butler, L. G., Ejeta, G. and Menkir, A. 1996. Grain mold resistance and polyphenol accumulation in sorghum. J. Agric. Food Chem. 44: 2428-2434.   DOI
2 O'Donnell, K., Kistler, H. C., Cigelnik, E. and Ploetz, R. C. 1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl. Acad. Sci. U. S. A. 95: 2044-2049.   DOI
3 Proctor, R. H., Plattner, R. D., Brown, D. W., Seo, J. A. and Lee, Y. W. 2004. Discontinuous distribution of fumonisin biosynthetic genes in the Gibberella fujikuroi species complex. Mycol. Res. 108: 815-822.   DOI
4 Rural Development Administration. 2018. Handbook to Agricultural Technology 196: Sorghum. Rural Development Administration, Jeonju, Korea. 8 pp. (In Korean)
5 Sharma, R., Thakur, R. P., Senthilvel, S., Nayak, S., Reddy, S. V., Rao, V. P. et al. 2011. Identification and characterization of toxigenic Fusaria associated with sorghum grain mold complex in India. Mycopathologia 171: 223-230.   DOI
6 Shotwell, O. L., Bennett, G. A., Goulden, M. L., Plattner, R. D. and Hesseltine, C. W. 1980. Survey for zearalenone, aflatoxin and ochratoxin in U.S. grain sorghum from 1975 and 1976 crops. J. Assoc. Off. Anal. Chem. 63: 922-926.
7 Thakur, R. P., Rao, V. P., Navi, S. S., Garud, T. B., Agarkar, G. D. and Bhat, B. 2003. Sorghum grain mold: variability in fungal complex. Int. Sorghum Millets Newsl. 2003: 104-108.
8 van der Lee, T., Zhang, H., Diepeningen, A. and Waalwijk, C. 2015. Biogeography of Fusarium graminearum species complex and chemotypes: a review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 32: 453-460.   DOI
9 Zhang, H., Zhang, Z., van der Lee, T., Chen, W. Q., Xu, J., Xu, J. S. et al. 2010. Population genetic analyses of Fusarium asiaticum populations from barley suggest a recent shift favoring 3ADON producers in southern China. Phytopathology 100: 328-336.   DOI
10 Ward, T. J., Bielawski, J. P., Kistler, H. C., Sullivan, E. and O'Donnell, K. 2002. Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proc. Natl. Acad. Sci. U. S. A. 99: 9278-9283.   DOI
11 Erpelding, J. E. and Prom, L. K. 2006. Seed mycoflora for grain mold from natural infection in sorghum germplasm grown at Isabela, Puerto Rico and their association with kernel weight and germination. Plant Pathol. J. 5: 106-112.   DOI
12 An, T. J., Shin, K. S., Paul, N. C., Kim, Y. G., Cha, S. W., Moon, Y. et al. 2016. Prevalence, characterization, and mycotoxin production ability of Fusarium species on Korean adlay (Coix lacrymal-jobi L.) seeds. Toxins 8: 310.   DOI
13 Aoyama, K., Ishikuro, E., Nishiwaki, M. and Ichinoe, M. 2009. Zearalenone contamination and the causative fungi in sorghum. J. Food Hyg. Soc. Jpn. 50: 47-51.   DOI
14 Chi, M.-H., Park, S.-Y. and Lee, Y.-H. 2009. A quick and safe method for fungal DNA extraction. Plant Pathol. J. 25: 108-111.   DOI
15 Choi, H.-W., Hong, S. K., Lee, Y. K. and Kim, W. G. 2013. Diversity and pathogenicity of Fusarium species associated with grain mold of sorghum. Korean J. Mycol. 41: 142-148. (In Korean)   DOI
16 Choi, J.-H., Lee, S., Nah, J.-Y., Kim, H.-K., Paek, J.-S., Lee, S. et al. 2018. Species composition of and fumonisin production by the Fusarium fujikuroi species complex isolated from Korean cereals. Int. J. Food Microbiol. 267: 62-69.   DOI
17 Jang, J. Y., Kim, S., Jin, H. S., Baek, S. G., O, S., Kim, K. et al. 2018. Occurrence of toxigenic Fusarium spp. and zearalenone in scabby rice grains and healthy ones. Res. Plant. Dis. 24: 308-312. (In Korean)   DOI
18 Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549.   DOI
19 Jeon, Y.-A., Yu, S.-H., Lee, Y. Y., Park, H.-J., Lee, S., Sung, J. S. et al. 2013. Incidence, molecular characteristics and pathogenicity of Gibberella fujikuroi species complex associated with rice seeds from Asian countries. Mycobiology 41: 225-233.   DOI
20 Kosiak, E. B,, Holst-Jensen, A., Rundberget, T., Jaen, M. T. G. and Torp, M. 2005. Morphological, chemical and molecular differentiation of Fusarium equiseti isolated from Norwegian cereals. Int. J. Food Microbiol. 99: 195-206.   DOI
21 Lee, S.-H., Lee, J., Nam, Y. J., Lee, S., Ryu, J.-G. and Lee, T. 2010. Population structure of Fusarium graminearum from maize and rice in 2009 in Korea. Plant Pathol. J. 26: 321-327.   DOI
22 Liu, Y. J., Whelen, S. and Hall, B. D. 1999. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Mol. Biol. Evol. 16: 1799-1808.   DOI
23 Lehotay, S. J., Mastovská, K. and Lightfield, A. R. 2005. Use of buffering and other means to improve results of problematic pesticides in a fast and easy method for residue analysis of fruits and vegetables. J. AOAC Int. 88: 615-629.   DOI
24 Leslie, J. F., Zeller, K. A., Lamprecht, S. C., Rheeder, J. P. and Marasas, W. F. O. 2005. Toxicity, pathogenicity, and genetic differentiation of five species of Fusarium from sorghum and millet. Phytopathology 95: 275-283.   DOI
25 Little, C. R. and Magill, C. W. 2009. The grain mold pathogen, Fusarium thapsinum, reduces caryopsis formation in Sorghum bicolor. J. Phytopathol. 157: 518-519.   DOI